Scale, decreasing types, and extending functions continuously in o-minimal theories

Janak Ramakrishnan

Université Claude Bernard Lyon I

October 1, 2008

• We work here with o-minimal structures.

- A structure is o-minimal iff it is linearly ordered and any definable subset is a finite union of points and intervals.
- In an o-minimal structure, M, for any definable n-ary function, there
 exists a decomposition of Mⁿ into finitely many definable "cells" such
 that the function is continuous on each cell.
- A consequence: every definable function in an o-minimal structure is "eventually" continuous, monotone, and unchanging in sign.
- To verify that a function is continuous on a definable set, it suffices to show that, for any two definable curves with the same endpoint, the limit of the function along the curves is the same.

- We work here with o-minimal structures.
- A structure is o-minimal iff it is linearly ordered and any definable subset is a finite union of points and intervals.
- In an o-minimal structure, M, for any definable n-ary function, there exists a decomposition of M^n into finitely many definable "cells" such that the function is continuous on each cell.
- A consequence: every definable function in an o-minimal structure is "eventually" continuous, monotone, and unchanging in sign.
- To verify that a function is continuous on a definable set, it suffices to show that, for any two definable curves with the same endpoint, the limit of the function along the curves is the same.

- We work here with o-minimal structures.
- A structure is o-minimal iff it is linearly ordered and any definable subset is a finite union of points and intervals.
- In an o-minimal structure, M, for any definable n-ary function, there exists a decomposition of M^n into finitely many definable "cells" such that the function is continuous on each cell.
- A consequence: every definable function in an o-minimal structure is "eventually" continuous, monotone, and unchanging in sign.
- To verify that a function is continuous on a definable set, it suffices to show that, for any two definable curves with the same endpoint, the limit of the function along the curves is the same.

- We work here with o-minimal structures.
- A structure is o-minimal iff it is linearly ordered and any definable subset is a finite union of points and intervals.
- In an o-minimal structure, M, for any definable n-ary function, there exists a decomposition of M^n into finitely many definable "cells" such that the function is continuous on each cell.
- A consequence: every definable function in an o-minimal structure is "eventually" continuous, monotone, and unchanging in sign.
- To verify that a function is continuous on a definable set, it suffices to show that, for any two definable curves with the same endpoint, the limit of the function along the curves is the same.

- We work here with o-minimal structures.
- A structure is o-minimal iff it is linearly ordered and any definable subset is a finite union of points and intervals.
- In an o-minimal structure, M, for any definable n-ary function, there exists a decomposition of M^n into finitely many definable "cells" such that the function is continuous on each cell.
- A consequence: every definable function in an o-minimal structure is "eventually" continuous, monotone, and unchanging in sign.
- To verify that a function is continuous on a definable set, it suffices to show that, for any two definable curves with the same endpoint, the limit of the function along the curves is the same.

Basic dichotomy: cuts/noncuts

Lemma (Pillay-Steinhorn)

Let M be o-minimal, let $A = \operatorname{acl}(A)$ be a subset of M, and let $p \in S_1(A)$. Then the formulas in p of the form x > a, x < a, and x = a generate p.

Definition (Marker)

For $A = \operatorname{acl}(A)$, $p \in S_1(A)$ is a **cut** iff it is non-algebraic and (1) there are formulas of the form a < x and x < a in p, and (2) for every formula of the form a < x in p, there is b > a such that b < x is in p, and similarly for x < a. p is a **noncut** if it is non-algebraic and not a cut.

Basic dichotomy: cuts/noncuts

Lemma (Pillay-Steinhorn)

Let M be o-minimal, let $A = \operatorname{acl}(A)$ be a subset of M, and let $p \in S_1(A)$. Then the formulas in p of the form x > a, x < a, and x = a generate p.

Definition (Marker)

For $A = \operatorname{acl}(A)$, $p \in S_1(A)$ is a **cut** iff it is non-algebraic and (1) there are formulas of the form a < x and x < a in p, and (2) for every formula of the form a < x in p, there is b > a such that b < x is in p, and similarly for x < a. p is a **noncut** if it is non-algebraic and not a cut.

- Despite their negative definition, noncuts are actually quite simple to describe. A noncut has one of the following four forms, for some a ∈ A:
- $\{x > a\} \cup \{x < b \mid b > a, b \in A\}$ • $\{x < a\} \cup \{x > b \mid b < a, b \in A\}$ • $\{x > b \mid b \in A\}$ • $\{x < b \mid b \in A\}$.
- The first two are called, respectively, the noncut to the right (left) of a, while the last two are called, respectively, the noncut near positive (negative) infinity.
- Noncuts are the definable 1-types, definable over the (at most one)-element set containing just the "near" point.

- Despite their negative definition, noncuts are actually quite simple to describe. A noncut has one of the following four forms, for some a ∈ A:
- $\{x > a\} \cup \{x < b \mid b > a, b \in A\}$ • $\{x < a\} \cup \{x > b \mid b < a, b \in A\}$ • $\{x > b \mid b \in A\}$ • $\{x < b \mid b \in A\}$.
- The first two are called, respectively, the noncut to the right (left) of a, while the last two are called, respectively, the noncut near positive (negative) infinity.
- Noncuts are the definable 1-types, definable over the (at most one)-element set containing just the "near" point.

- Despite their negative definition, noncuts are actually quite simple to describe. A noncut has one of the following four forms, for some a ∈ A:
- $\{x > a\} \cup \{x < b \mid b > a, b \in A\}$ • $\{x < a\} \cup \{x > b \mid b < a, b \in A\}$ • $\{x > b \mid b \in A\}$ • $\{x < b \mid b \in A\}$.
- The first two are called, respectively, the noncut to the right (left) of a, while the last two are called, respectively, the noncut near positive (negative) infinity.
- Noncuts are the definable 1-types, definable over the (at most one)-element set containing just the "near" point.

- Despite their negative definition, noncuts are actually quite simple to describe. A noncut has one of the following four forms, for some a ∈ A:
- $\{x > a\} \cup \{x < b \mid b > a, b \in A\}$ • $\{x < a\} \cup \{x > b \mid b < a, b \in A\}$ • $\{x > b \mid b \in A\}$ • $\{x < b \mid b \in A\}$.
- The first two are called, respectively, the noncut to the right (left) of a, while the last two are called, respectively, the noncut near positive (negative) infinity.
- Noncuts are the definable 1-types, definable over the (at most one)-element set containing just the "near" point.

More preliminaries: scale

Definition

Let $A \subset B$, and $p \in S_1(B)$, with p a cut over B. Let c be any realization of p. If there is a B-definable k-ary function, f, such that $f(A^k)$ is both cofinal in B below c and coinitial in B above c, we say that p is k-in scale on A. Otherwise, if there is such an f with $f(A^k)$ cofinal or coinitial, but not both, we say that p is k-near scale on A. If no such f exists, we say that p is out of scale on A.

Lemma

In the above definitions, "k" can be replaced by "1".

In view of the lemma we will drop the k and just speak of "in scale," "near scale," and "out of scale."

More preliminaries: scale

Definition

Let $A \subset B$, and $p \in S_1(B)$, with p a cut over B. Let c be any realization of p. If there is a B-definable k-ary function, f, such that $f(A^k)$ is both cofinal in B below c and coinitial in B above c, we say that p is k-in scale on A. Otherwise, if there is such an f with $f(A^k)$ cofinal or coinitial, but not both, we say that p is k-near scale on A. If no such f exists, we say that p is out of scale on A.

Lemma

In the above definitions, "k" can be replaced by "1".

In view of the lemma we will drop the k and just speak of "in scale," "near scale," and "out of scale."

More preliminaries: scale

Definition

Let $A \subset B$, and $p \in S_1(B)$, with p a cut over B. Let c be any realization of p. If there is a B-definable k-ary function, f, such that $f(A^k)$ is both cofinal in B below c and coinitial in B above c, we say that p is k-in scale on A. Otherwise, if there is such an f with $f(A^k)$ cofinal or coinitial, but not both, we say that p is k-near scale on A. If no such f exists, we say that p is out of scale on A.

Lemma

In the above definitions, "k" can be replaced by "1".

In view of the lemma we will drop the k and just speak of "in scale," "near scale," and "out of scale."

Definable *n*-types: Marker-Steinhorn

Theorem (Marker-Steinhorn)

Let $p \in S_n(A)$. p is definable iff for some/any $c = \langle c_1, \ldots, c_n \rangle \models p$, and for $i = 1, \ldots, n$, we have $\operatorname{tp}(c_i/Ac_{< i})$ a noncut, or near scale or out of scale on A.

Let $M = (\mathbb{R}, +, \cdot, 0, 1, <)$. Let $N = M(\epsilon)$, where ϵ is infinitesimal. For compactness of notation, let $P = \mathbb{R}_+$.

Let $M=(\mathbb{R},+,\cdot,0,1,<)$. Let $N=M(\epsilon)$, where ϵ is infinitesimal. For compactness of notation, let $P=\mathbb{R}_+$.

• If
$$c \models p = \operatorname{tp}(\epsilon^{\sqrt{2}}/N)$$
, then
$$P\epsilon P\epsilon^{1.4} P\epsilon^{1.41} P\epsilon^{\sqrt{2}} P\epsilon^{1.42} P\epsilon^{1.5} P\epsilon^{2} P\epsilon^{2}$$

p is out of scale on M, so $tp(\epsilon, c)$ is definable.

Let $M=(\mathbb{R},+,\cdot,0,1,<)$. Let $N=M(\epsilon)$, where ϵ is infinitesimal. For compactness of notation, let $P=\mathbb{R}_+$.

$$\underbrace{P\epsilon}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.4}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.41}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{\sqrt{2}}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.42}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.5}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{2}}_{(\cdots\cdots)}$$

p is out of scale on M, so $tp(\epsilon, c)$ is definable.

② If $c \models p = \operatorname{tp}(\sum_{i=1}^{\infty} \epsilon^i/N)$, then

p is out of scale on M, so $tp(\epsilon, c)$ is definable.

Let $M = (\mathbb{R}, +, \cdot, 0, 1, <)$. Let $N = M(\epsilon)$, where ϵ is infinitesimal. For compactness of notation, let $P = \mathbb{R}_+$.

• If $c \models p = \operatorname{tp}(\epsilon^{\sqrt{2}}/N)$, then

$$\underbrace{P\epsilon}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.4}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.41}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{\sqrt{2}}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.42}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{1.5}}_{(\cdots\cdots)}, \underbrace{P\epsilon^{2}}_{(\cdots\cdots)}$$

p is out of scale on M, so $tp(\epsilon, c)$ is definable.

2 If $c \models p = \operatorname{tp}(\sum_{i=1}^{\infty} \epsilon^i / N)$, then

p is out of scale on M, so $tp(\epsilon, c)$ is definable.

■ Let $M = (\mathbb{Q}^{\mathrm{rcl}}, +, \cdot, 0, 1, <)$, and let $N = M(\epsilon)$. If $c \models p = \mathrm{tp}(\pi \epsilon/N)$, then p is in scale on M since, if $f(x) = x\epsilon$, f(M) is both cofinal and coinitial at c in N. Thus, $\mathrm{tp}(\epsilon, c)$ is in scale and not definable.

More examples of scale

• Let $M(\mathbb{R},+,\cdot,0,1,<)$ and let $N=M(\epsilon)$. Let c be smaller than every real, but larger than ϵ^d , for any rational d>0.

 $\operatorname{tp}(c/N)$ is near scale on M since, if f(x) = x, f(M) is coinitial at c in N. However, note that, if we take N' = M(c), then ϵ is a noncut over N', so the scale issue does not arise. $\operatorname{tp}(\epsilon,c)$ is definable.

More examples of scale

• Let $M(\mathbb{R}, +, \cdot, 0, 1, <)$ and let $N = M(\epsilon)$. Let c be smaller than every real, but larger than ϵ^d , for any rational d > 0.

 $\operatorname{tp}(c/N)$ is near scale on M since, if f(x) = x, f(M) is coinitial at c in N. However, note that, if we take N' = M(c), then ϵ is a noncut over N', so the scale issue does not arise. $\operatorname{tp}(\epsilon,c)$ is definable.

○ Let $M = (\mathbb{R}, +, \cdot, 0, 1, <)$ and $N = M(\epsilon)$, and let c be smaller than $r\epsilon$ for $r \in \mathbb{R}_+$, but larger than ϵ^q for $q \in \mathbb{Q}_{>1}$.

$$P\epsilon^2$$
 $P\epsilon^{1.4}$ $P\epsilon^{1.1}$ $P\epsilon$

 $\operatorname{tp}(c/N)$ is near scale on M since, if $f(x) = x\epsilon$, f(M) is coinitial at c in N. $\operatorname{tp}(\epsilon, c)$ is definable.

And now for something completely different?

Extending Functions to Closures¹

Let γ be a curve in M^n with one endpoint the origin, and let f be an M-definable bounded n-ary function. Can we find an initial segment of γ and a definable set containing that initial segment on which f is continuous, or extends continuously?

Note that we can certainly find a definable set containing $\gamma \setminus \{0\}$ on which f is continuous. The difficulty is in extending f continuously to 0, which is equivalent to extending f continuously to the closure of the definable set.

¹Patrick Speissegger raised this question with me, and parts of the following work were done first by him in a different form, particularly one of the cases in the main proposition.

Extending Functions to Closures¹

Let γ be a curve in M^n with one endpoint the origin, and let f be an M-definable bounded n-ary function. Can we find an initial segment of γ and a definable set containing that initial segment on which f is continuous, or extends continuously?

Note that we can certainly find a definable set containing $\gamma \setminus \{0\}$ on which f is continuous. The difficulty is in extending f continuously to 0, which is equivalent to extending f continuously to the closure of the definable set.

¹Patrick Speissegger raised this question with me, and parts of the following work were done first by him in a different form, particularly one of the cases in the main proposition.

Example

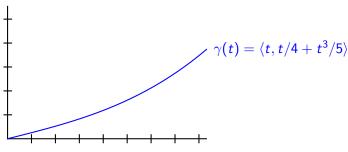
Let $f(x,y) = \min(1,y/x)$, and let γ be any definable curve in the first quadrant with left endpoint 0.

Example

Let $f(x,y) = \min(1,y/x)$, and let γ be any definable curve in the first quadrant with left endpoint 0.

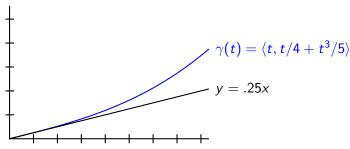
Example

Let $f(x,y) = \min(1,y/x)$, and let γ be any definable curve in the first quadrant with left endpoint 0.



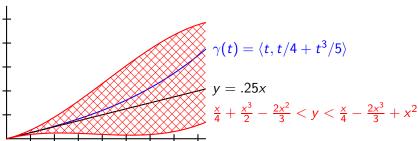
Example

Let $f(x,y) = \min(1,y/x)$, and let γ be any definable curve in the first quadrant with left endpoint 0.



Example

Let $f(x,y) = \min(1,y/x)$, and let γ be any definable curve in the first quadrant with left endpoint 0.



Example

Let $f(x,y) = \min(1,y/x)$, and let γ be any definable curve in the first quadrant with left endpoint 0.

We can take a pair of parabolas whose derivatives at 0 are the same as the curve's at 0, giving us a cell on which f extends continuously to the closure.

What about the question for non-definable curves? Given a (non-definable) curve, can we find a set on which the function is continuous, which contains the curve, and on whose closure the function extends continuously.

There are easy examples of failure.

Example

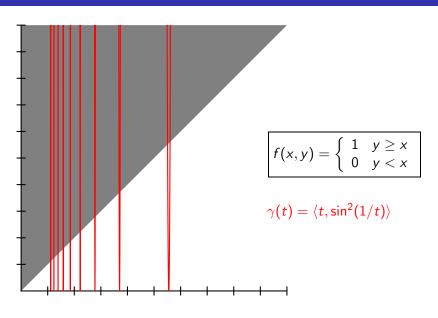
Let $f(x,y) = \min(1,y/x)$, and let γ be any definable curve in the first quadrant with left endpoint 0.

We can take a pair of parabolas whose derivatives at 0 are the same as the curve's at 0, giving us a cell on which f extends continuously to the closure.

What about the question for non-definable curves? Given a (non-definable) curve, can we find a set on which the function is continuous, which contains the curve, and on whose closure the function extends continuously.

There are easy examples of failure.

Oscillating Disaster



Restricting to Good Curves

- Clearly, we must impose some conditions on our curves.
- Important point is that components of curve (and every definable function of them) are eventually *comparable* to any definable function. Motivates:

Restricting to Good Curves

- Clearly, we must impose some conditions on our curves.
- Important point is that components of curve (and every definable function of them) are eventually comparable to any definable function. Motivates:

Comparing Curves

Definition

Let f and g be unary functions (not necessarily definable), each of whose domains includes some positive neighborhood of 0. f and g are comparable if, for some s>0, one of a) for all $t\in(0,s)$, f(t)< g(t); b) for all $t\in(0,s)$, f(t)=g(t); or c) for all $t\in(0,s)$, f(t)>g(t).

We must now express the idea of any definable function of the curve components being comparable to every definable function:

Comparing Curves

Definition

Let f and g be unary functions (not necessarily definable), each of whose domains includes some positive neighborhood of 0. f and g are comparable if, for some s>0, one of a) for all $t\in(0,s)$, f(t)< g(t); b) for all $t\in(0,s)$, f(t)=g(t); or c) for all $t\in(0,s)$, f(t)>g(t).

We must now express the idea of any definable function of the curve components being comparable to every definable function:

Ordered Curves

Definition

Let M be any o-minimal structure, and let $\gamma = \langle \gamma_1, \ldots, \gamma_n \rangle$ be a (not necessarily definable) curve in M^n . Say that γ is ordered if, for $i=2,\ldots,n$, γ_i is comparable to every function in the set

$$\{f(\gamma_{i_1}(t),\ldots,\gamma_{i_k}(t))\mid f \text{ is an M-definable k-ary function}, i_1,\ldots,i_k< i\},$$

and γ_1 is comparable to every *M*-definable function of t.

Note that whether or not γ is ordered does not depend on the ordering of the coordinates of γ .

Ordered Curves

Definition

Let M be any o-minimal structure, and let $\gamma = \langle \gamma_1, \ldots, \gamma_n \rangle$ be a (not necessarily definable) curve in M^n . Say that γ is ordered if, for $i=2,\ldots,n,$ γ_i is comparable to every function in the set

$$\{f(\gamma_{i_1}(t), \dots, \gamma_{i_k}(t)) \mid f \text{ is an M-definable k-ary function}, i_1, \dots, i_k < i\},$$

and γ_1 is comparable to every *M*-definable function of t.

Note that whether or not γ is ordered does not depend on the ordering of the coordinates of γ .

Ordered Failure

- ullet Unfortunately, requiring that γ be ordered is not enough to make any bounded definable function continuous on γ 's closure.
- Let $M=(\mathbb{R},+,\cdot,<,0,1)$. Let f(x,y) be $\min(1,y/x)$, and let $\gamma(t)=\langle t,-t/\ln t\rangle$, so γ is undefinable in M. Note, though, that since γ is definable in the o-minimal expansion of M, $(\mathbb{R},+,\cdot,<,\exp)$ γ is certainly ordered.
- $f(\gamma(t)) = -1/\ln t$, so $\lim_{t\to 0^+} f(\gamma(t)) = 0$.

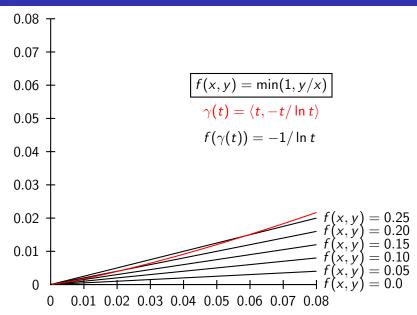
Ordered Failure

- Unfortunately, requiring that γ be ordered is not enough to make any bounded definable function continuous on γ 's closure.
- Let $M=(\mathbb{R},+,\cdot,<,0,1)$. Let f(x,y) be $\min(1,y/x)$, and let $\gamma(t)=\langle t,-t/\ln t\rangle$, so γ is undefinable in M. Note, though, that since γ is definable in the o-minimal expansion of M, $(\mathbb{R},+,\cdot,<,\exp)$, γ is certainly ordered.
- $f(\gamma(t)) = -1/\ln t$, so $\lim_{t\to 0^+} f(\gamma(t)) = 0$.

Ordered Failure

- Unfortunately, requiring that γ be ordered is not enough to make any bounded definable function continuous on γ 's closure.
- Let $M=(\mathbb{R},+,\cdot,<,0,1)$. Let f(x,y) be $\min(1,y/x)$, and let $\gamma(t)=\langle t,-t/\ln t\rangle$, so γ is undefinable in M. Note, though, that since γ is definable in the o-minimal expansion of M, $(\mathbb{R},+,\cdot,<,\exp)$, γ is certainly ordered.
- $f(\gamma(t)) = -1/\ln t$, so $\lim_{t\to 0^+} f(\gamma(t)) = 0$.

γ Is Less Than Every Linear Function



γ Cannot Be Squeezed

- $-1/\ln t$ goes to 0, but it is also greater than t^d , for any d>0, for sufficiently small t. Thus, $-t/\ln t$ is greater than t^{1+d} , but less than at, for every $a\in\mathbb{R}_+$.
- It is not hard to see that any definable set in $(\mathbb{R},+,\cdot,<,0,1)$ that contains γ must contain the curve $\langle t,at \rangle$, for some real positive a, as well as the curve $\langle t,bt^{1+q} \rangle$, for some real positive b and positive rational q.
- f cannot be continuously extended onto this set's closure, because along the latter curve, its limit at the origin is 0, while along the linear curve, it is a.

γ Cannot Be Squeezed

- $-1/\ln t$ goes to 0, but it is also greater than t^d , for any d>0, for sufficiently small t. Thus, $-t/\ln t$ is greater than t^{1+d} , but less than at, for every $a\in\mathbb{R}_+$.
- It is not hard to see that any definable set in $(\mathbb{R},+,\cdot,<,0,1)$ that contains γ must contain the curve $\langle t,at \rangle$, for some real positive a, as well as the curve $\langle t,bt^{1+q} \rangle$, for some real positive b and positive rational q.
- f cannot be continuously extended onto this set's closure, because along the latter curve, its limit at the origin is 0, while along the linear curve, it is a.

γ Cannot Be Squeezed

- $-1/\ln t$ goes to 0, but it is also greater than t^d , for any d>0, for sufficiently small t. Thus, $-t/\ln t$ is greater than t^{1+d} , but less than at, for every $a\in\mathbb{R}_+$.
- It is not hard to see that any definable set in $(\mathbb{R},+,\cdot,<,0,1)$ that contains γ must contain the curve $\langle t,at \rangle$, for some real positive a, as well as the curve $\langle t,bt^{1+q} \rangle$, for some real positive b and positive rational q.
- f cannot be continuously extended onto this set's closure, because along the latter curve, its limit at the origin is 0, while along the linear curve, it is a.

Why Did γ Fail?

The failure of γ can be seen as coming from the fact that we could not squeeze γ sufficiently. The gap between a linear function and a higher-power function is too great. To more closely analyze this, we can abstract out the "type" of γ .

The Limit Type of a Curve

Lemma

Let $\gamma = \langle \gamma_1, \ldots, \gamma_k \rangle$ be an ordered curve. Let $\gamma(t)$ denote the sequence $\langle \gamma_1(t), \ldots, \gamma_k(t) \rangle \in M^k$, for $t \in M$. Then $\lim_{t \to 0^+} \operatorname{tp}(\gamma(t)/M)$ exists, in the following sense: for each formula $\psi(x_1, \ldots, x_k)$ in M, there is some s > 0 such that either $\psi(\gamma(t))$ holds for all $t \in (0, s)$, or $\neg \psi(\gamma(t))$ holds for all $t \in (0, s)$.

Curve Limit Type Determines Definable Set Membership

Definition

With γ as above, let $\operatorname{tp}(\gamma/M)$ denote $\lim_{t\to 0^+} \operatorname{tp}(\gamma(t)/M)$. We can then talk about the type of γ_i over $\gamma_{< i}M$.

Proposition

Let γ be an ordered curve. Then, for any definable C, there exists an s > 0 such that $\gamma((0,s)) \subseteq C$ if and only if $C \in \operatorname{tp}(\gamma/M)$.

Curve Limit Type Determines Definable Set Membership

Definition

With γ as above, let $\operatorname{tp}(\gamma/M)$ denote $\lim_{t\to 0^+} \operatorname{tp}(\gamma(t)/M)$. We can then talk about the type of γ_i over $\gamma_{< i}M$.

Proposition

Let γ be an ordered curve. Then, for any definable C, there exists an s>0 such that $\gamma((0,s))\subseteq C$ if and only if $C\in\operatorname{tp}(\gamma/M)$.

- For every $r > 0 \in \mathbb{R}_+$, $x_1 < r$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}_+$, $x_2 < rx_1$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}$, $q \in \mathbb{Q}_+$, $x_2 > rx_1^{1+q}$ is in $tp(\gamma)$.

- For every $r > 0 \in \mathbb{R}_+$, $x_1 < r$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}_+$, $x_2 < rx_1$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}$, $q \in \mathbb{Q}_+$, $x_2 > rx_1^{1+q}$ is in $tp(\gamma)$.

- For every $r > 0 \in \mathbb{R}_+$, $x_1 < r$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}_+$, $x_2 < rx_1$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}$, $q \in \mathbb{Q}_+$, $x_2 > rx_1^{1+q}$ is in $tp(\gamma)$.

- For every $r > 0 \in \mathbb{R}_+$, $x_1 < r$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}_+$, $x_2 < rx_1$ is in $tp(\gamma)$.
- For every $r \in \mathbb{R}$, $q \in \mathbb{Q}_+$, $x_2 > rx_1^{1+q}$ is in $tp(\gamma)$.

Failure of Continuity Extension for a Type

Since we have equivalence of definable set membership for curves and their types, we can rephrase our failure with γ as follows:

Example

Take our model to be $(\mathbb{R},+,\cdot,<,0,1)$. Let p(x,y) be the type which says that x is greater than 0 but less than every real, and that y is less than rx, for any $r \in \mathbb{R}_+$, but greater than rx^{1+q} , for any $r \in \mathbb{R}$, $q \in \mathbb{Q}_+$. It is easy to see that these conditions generate a complete consistent type. Let f be as before, $\min(1,y/x)$.

There is no definable set, C, such that $C \in p$, f is continuous on C, and f extends continuously to \overline{C} .

But we saw the type in this example before. It is 5.

Failure of Continuity Extension for a Type

Since we have equivalence of definable set membership for curves and their types, we can rephrase our failure with γ as follows:

Example

Take our model to be $(\mathbb{R},+,\cdot,<,0,1)$. Let p(x,y) be the type which says that x is greater than 0 but less than every real, and that y is less than rx, for any $r \in \mathbb{R}_+$, but greater than rx^{1+q} , for any $r \in \mathbb{R}$, $q \in \mathbb{Q}_+$. It is easy to see that these conditions generate a complete consistent type. Let f be as before, $\min(1,y/x)$.

There is no definable set, C, such that $C \in p$, f is continuous on C, and f extends continuously to \overline{C} .

But we saw the type in this example before. It is 5.

Failure of Continuity Extension for a Type

Since we have equivalence of definable set membership for curves and their types, we can rephrase our failure with γ as follows:

Example

Take our model to be $(\mathbb{R},+,\cdot,<,0,1)$. Let p(x,y) be the type which says that x is greater than 0 but less than every real, and that y is less than rx, for any $r \in \mathbb{R}_+$, but greater than rx^{1+q} , for any $r \in \mathbb{R}$, $q \in \mathbb{Q}_+$. It is easy to see that these conditions generate a complete consistent type. Let f be as before, $\min(1,y/x)$.

There is no definable set, C, such that $C \in p$, f is continuous on C, and f extends continuously to \overline{C} .

But we saw the type in this example before. It is 5.

If we look at our examples, we see that, in addition to 5, 3, with $\langle \epsilon, \pi \epsilon \rangle$, is easily seen to have the same failure, with the same function of $\min(y/x,1)$. So there are problems if a coordinate is near scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the previous ones is the necessary criterion.

But 4 shows that we must be more careful – while $\langle \epsilon, c \rangle$ has the second coordinate near scale over the first, if we reverse the coordinates, $\langle c, \epsilon \rangle$ is just one infinitesimal followed by another, and it is not hard to show such a type cannot yield a counterexample.

If we look at our examples, we see that, in addition to 5, 3, with $\langle \epsilon, \pi \epsilon \rangle$, is easily seen to have the same failure, with the same function of $\min(y/x,1)$. So there are problems if a coordinate is near scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the previous ones is the necessary criterion.

But 4 shows that we must be more careful – while $\langle \epsilon, c \rangle$ has the second coordinate near scale over the first, if we reverse the coordinates, $\langle c, \epsilon \rangle$ is just one infinitesimal followed by another, and it is not hard to show such a type cannot yield a counterexample.

If we look at our examples, we see that, in addition to 5, 3, with $\langle \epsilon, \pi \epsilon \rangle$, is easily seen to have the same failure, with the same function of $\min(y/x,1)$. So there are problems if a coordinate is near scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the previous ones is the necessary criterion.

But 4 shows that we must be more careful – while $\langle \epsilon, c \rangle$ has the second coordinate near scale over the first, if we reverse the coordinates, $\langle c, \epsilon \rangle$ is just one infinitesimal followed by another, and it is not hard to show such a type cannot yield a counterexample.

If we look at our examples, we see that, in addition to 5, 3, with $\langle \epsilon, \pi \epsilon \rangle$, is easily seen to have the same failure, with the same function of $\min(y/x,1)$. So there are problems if a coordinate is near scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the previous ones is the necessary criterion.

But 4 shows that we must be more careful – while $\langle \epsilon, c \rangle$ has the second coordinate near scale over the first, if we reverse the coordinates, $\langle c, \epsilon \rangle$ is just one infinitesimal followed by another, and it is not hard to show such a type cannot yield a counterexample.

Decreasing Types: The Order

Definition

Let A be a set. Define $a \prec_A b$ iff there exists $a' \in dcl(aA)$ such that a' > 0, and $(0, a') \cap dcl(bA) = \emptyset$. Define $a \sim_A b$ if $a \not\prec_A b$ and $b \not\prec_A a$. Finally, let $a \preceq_A b$ if $a \sim_A b$ or $a \prec_A b$.

This definition captures the idea that a is infinitesimal relative to b over A, or at least that some element of dcl(Aa) is.

Lemma

 \sim_A is an equivalence relation, and \prec_A totally orders the \sim_A -classes.

Decreasing Types: The Order

Definition

Let A be a set. Define $a \prec_A b$ iff there exists $a' \in dcl(aA)$ such that a' > 0, and $(0, a') \cap dcl(bA) = \emptyset$. Define $a \sim_A b$ if $a \not\prec_A b$ and $b \not\prec_A a$. Finally, let $a \preceq_A b$ if $a \sim_A b$ or $a \prec_A b$.

This definition captures the idea that a is infinitesimal relative to b over A, or at least that some element of dcl(Aa) is.

Lemma

 \sim_A is an equivalence relation, and \prec_A totally orders the \sim_A -classes.

Decreasing Types: The Order

Definition

Let A be a set. Define $a \prec_A b$ iff there exists $a' \in dcl(aA)$ such that a' > 0, and $(0, a') \cap dcl(bA) = \emptyset$. Define $a \sim_A b$ if $a \not\prec_A b$ and $b \not\prec_A a$. Finally, let $a \preceq_A b$ if $a \sim_A b$ or $a \prec_A b$.

This definition captures the idea that a is infinitesimal relative to b over A, or at least that some element of dcl(Aa) is.

Lemma

 \sim_A is an equivalence relation, and \prec_A totally orders the \sim_A -classes.

Decreasing Types: Definition

Definition

Assume that we have a fixed sequence $c=\langle c_i\rangle_{i\in I}$. Then the \prec_{i} -ordering is the $\prec_{c<_i}$ -ordering. If we also have a fixed base set, A, then it will be the $\prec_{Ac_{<_i}}$ -ordering.

Definition

Let $p(x_1,...,x_n) \in S_n(A)$. p is decreasing if, for some (any) realization, $c = \langle c_1,...,c_n \rangle$ of p, $c_j \lesssim_i c_i$, for j > i.

Lemma

Any n-type can have its coordinates reordered so that it is decreasing.

Decreasing Types: Definition

Definition

Assume that we have a fixed sequence $c=\langle c_i\rangle_{i\in I}$. Then the \prec_{i} -ordering is the $\prec_{c<_i}$ -ordering. If we also have a fixed base set, A, then it will be the $\prec_{Ac_{<_i}}$ -ordering.

Definition

Let $p(x_1,...,x_n) \in S_n(A)$. p is decreasing if, for some (any) realization, $c = \langle c_1,...,c_n \rangle$ of p, $c_j \lesssim_i c_i$, for j > i.

Lemma

Any n-type can have its coordinates reordered so that it is decreasing.

Decreasing Types: Definition

Definition

Assume that we have a fixed sequence $c=\langle c_i\rangle_{i\in I}$. Then the \prec_{i} -ordering is the $\prec_{c<_i}$ -ordering. If we also have a fixed base set, A, then it will be the $\prec_{Ac_{<_i}}$ -ordering.

Definition

Let $p(x_1,...,x_n) \in S_n(A)$. p is decreasing if, for some (any) realization, $c = \langle c_1,...,c_n \rangle$ of p, $c_j \lesssim_i c_i$, for j > i.

Lemma

Any n-type can have its coordinates reordered so that it is decreasing.

Theorem

Theorem

Let M be an o-minimal structure expanding a real closed field. Let $p \in S_n(M)$ be a decreasing type "near" the origin. Then the following two conditions are equivalent:

- For $c = \langle c_1, \ldots, c_n \rangle$, some (any) realization of p, $\operatorname{tp}(c_i/c_{< i}M)$ is a noncut, or out of scale on M, for $i = 1, \ldots, n$.
- ② For every M-definable function, f, bounded on some M-definable set in p, there is an M-definable set, C, in p, such that f is continuous on C and extends continuously to cl(C).

Sketch of Backward Proof

The backward direction is fairly straightforward. Suppose that we have failure of the first condition. Then, at some coordinate, say the last one, we have some $Mc_{< n}$ -definable function, g, such that g(M) is near scale or in scale on M at c_n .

Consider $f=g^{-1}$ as a function of $c_{< n}$ and x. If C is any definable set containing c, we can choose $a \neq b \in M$ such that $g(a), g(b) \in C_{c_{< n}}$, and then, letting γ_1 and γ_2 be curves given by taking the pre-images of a and b under f, we get that it is impossible for f to extend continuously to the closure of C.

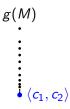
Sketch of Backward Proof

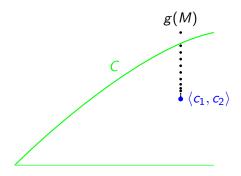
The backward direction is fairly straightforward. Suppose that we have failure of the first condition. Then, at some coordinate, say the last one, we have some $Mc_{< n}$ -definable function, g, such that g(M) is near scale or in scale on M at c_n .

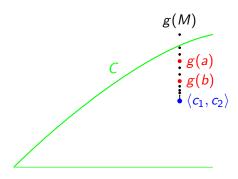
Consider $f=g^{-1}$ as a function of $c_{< n}$ and x. If C is any definable set containing c, we can choose $a \neq b \in M$ such that $g(a), g(b) \in C_{c_{< n}}$, and then, letting γ_1 and γ_2 be curves given by taking the pre-images of a and b under f, we get that it is impossible for f to extend continuously to the closure of C.

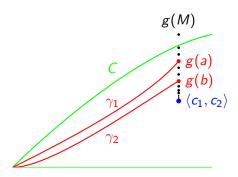
Sketch of Sketch of Backward Proof

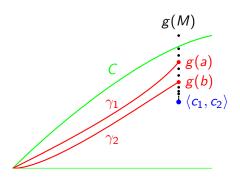
Sketch of Sketch of Backward Proof











$$f(x) = a$$
 for $x \in \gamma_1$, $f(x) = b$ for $x \in \gamma_2$.

Sketch of forward proof

For the forward direction, the proof works backwards along the coordinates of p. The auxiliary induction assumption that we use is that, when a and a' are tuples that agree through the ith coordinate, |f(a) - f(a')| is bounded by a function that goes to 0 as the last coordinate that was a noncut goes to its limit.

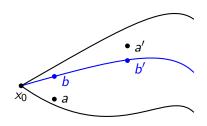
This ensures that, when the ith coordinate is a noncut, we can continuously extend f to the closure point. To maintain the above induction assumption, we can choose a definable curve in our set, and further restrict our set so that f applied to the curve stays very "close" to the limit value of f on the curve. Then, given two points that agree on their first i-1 coordinates, find a point on the curve that agrees with them on their first i coordinates, and use a triangle inequality:

Sketch of forward proof

For the forward direction, the proof works backwards along the coordinates of p. The auxiliary induction assumption that we use is that, when a and a' are tuples that agree through the ith coordinate, |f(a) - f(a')| is bounded by a function that goes to 0 as the last coordinate that was a noncut goes to its limit.

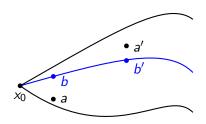
This ensures that, when the ith coordinate is a noncut, we can continuously extend f to the closure point. To maintain the above induction assumption, we can choose a definable curve in our set, and further restrict our set so that f applied to the curve stays very "close" to the limit value of f on the curve. Then, given two points that agree on their first i-1 coordinates, find a point on the curve that agrees with them on their first i coordinates, and use a triangle inequality:

More sketchiness



$$|f(b) - f(x_0)|$$
, $|f(b') - f(x_0)|$, $|f(a) - f(b)|$, $|f(a') - f(b')|$ all small

More sketchiness



$$|f(b) - f(x_0)|$$
, $|f(b') - f(x_0)|$, $|f(a) - f(b)|$, $|f(a') - f(b')|$ all small.

The noncut case is the one where any difficulties can lead to failure. The cut case is where difficulties start – where we may fail at preserving the induction assumption.

We will have to ensure that two points, a and a', that agree up to their ith coordinates, will give similar values when f is applied to them.

By doing the "opposite" of what was done in the proof of the backward direction, we can restrict to an interval that does not have any points from $f^{-1}(M)$.

The noncut case is the one where any difficulties can lead to failure. The cut case is where difficulties start – where we may fail at preserving the induction assumption.

We will have to ensure that two points, a and a', that agree up to their ith coordinates, will give similar values when f is applied to them.

By doing the "opposite" of what was done in the proof of the backward direction, we can restrict to an interval that does not have any points from $f^{-1}(M)$.

The noncut case is the one where any difficulties can lead to failure. The cut case is where difficulties start – where we may fail at preserving the induction assumption.

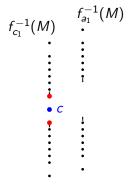
We will have to ensure that two points, a and a', that agree up to their ith coordinates, will give similar values when f is applied to them.

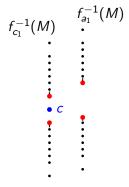
By doing the "opposite" of what was done in the proof of the backward direction, we can restrict to an interval that does not have any points from $f^{-1}(M)$.

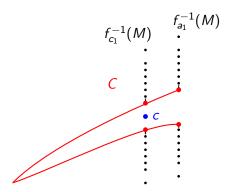
The noncut case is the one where any difficulties can lead to failure. The cut case is where difficulties start – where we may fail at preserving the induction assumption.

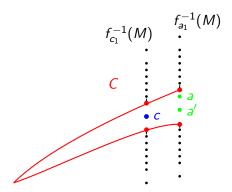
We will have to ensure that two points, a and a', that agree up to their ith coordinates, will give similar values when f is applied to them.

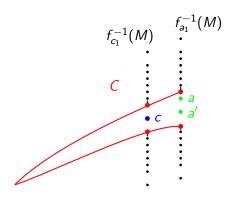
By doing the "opposite" of what was done in the proof of the backward direction, we can restrict to an interval that does not have any points from $f^{-1}(M)$.











$$tp(f(a)/M) = tp(f(a')/M).$$

(Surprisingly, also $tp(f(a)/Ma_{< k(i)}) = tp(f(a')/Ma_{< k(i)})$.)

Conclusion

With the theorem, our original case of a curve is resolved, by taking the curve's limit type.

While in this case, we were restricted from taking types that were interdefinable with our original, in circumstances where one can (for example, when examining definability), decreasing types allow for tighter results, since all near scale and in scale types can be removed – even our example of 5 disappears.

Conclusion

With the theorem, our original case of a curve is resolved, by taking the curve's limit type.

While in this case, we were restricted from taking types that were interdefinable with our original, in circumstances where one can (for example, when examining definability), decreasing types allow for tighter results, since all near scale and in scale types can be removed – even our example of 5 disappears.