Extending partial orders in tame ordered structures

Janak Ramakrishnan (joint with C. Steinhorn)

CMAF, University of Lisbon http://janak.org/talks/euro.pdf

Model Theory in Wrocław 2012 19 June 2012

- J. Truss asked whether any definable partial order in an o-minimal structure could be definably extended to a linear order.
- We will positively answer a generalization of this question, by describing several classes of ordered structures that definably extend their definable partial orders.
- These structures can be thought of as possessing a "definable" order extension principle – in these structures, the "order extension principle" of ZFC holds definably. Formally:

Definition

- J. Truss asked whether any definable partial order in an o-minimal structure could be definably extended to a linear order.
- We will positively answer a generalization of this question, by describing several classes of ordered structures that definably extend their definable partial orders.
- These structures can be thought of as possessing a "definable" order extension principle – in these structures, the "order extension principle" of ZFC holds definably. Formally:

Definition

- J. Truss asked whether any definable partial order in an o-minimal structure could be definably extended to a linear order.
- We will positively answer a generalization of this question, by describing several classes of ordered structures that definably extend their definable partial orders.
- These structures can be thought of as possessing a "definable" order extension principle – in these structures, the "order extension principle" of ZFC holds definably. Formally:

Definition

- J. Truss asked whether any definable partial order in an o-minimal structure could be definably extended to a linear order.
- We will positively answer a generalization of this question, by describing several classes of ordered structures that definably extend their definable partial orders.
- These structures can be thought of as possessing a "definable" order extension principle – in these structures, the "order extension principle" of ZFC holds definably. Formally:

Definition

A structure M has OE if it definably extends any partial order to a total one.

- All well-ordered structures.
- All (weakly) o-minimal structures (every definable 1-dimensional set is a finite union of points and convex sets).
- All (weakly-)quasi-o-minimal structures.
 - Prior to our work, the only results in this direction were when the partial order was 1-dimensional (just a subset of M).
 - MacPherson and Steinhorn did the case when M was o-minimal.
- ullet Felgner and Truss did the case when M was well-ordered, essentially by the same method as our proof.

A structure M has OE if it definably extends any partial order to a total one.

- All well-ordered structures.
- All (weakly) o-minimal structures (every definable 1-dimensional set is a finite union of points and convex sets).
- All (weakly-)quasi-o-minimal structures.
 - Prior to our work, the only results in this direction were when the partial order was 1-dimensional (just a subset of M).
 - MacPherson and Steinhorn did the case when M was o-minimal.
- ullet Felgner and Truss did the case when M was well-ordered, essentially by the same method as our proof.

A structure M has OE if it definably extends any partial order to a total one.

- All well-ordered structures.
- ② All (weakly) o-minimal structures (every definable 1-dimensional set is a finite union of points and convex sets).
- All (weakly-)quasi-o-minimal structures.
 - Prior to our work, the only results in this direction were when the partial order was 1-dimensional (just a subset of M).
- MacPherson and Steinhorn did the case when M was o-minimal.
- ullet Felgner and Truss did the case when M was well-ordered, essentially by the same method as our proof.

A structure M has OE if it definably extends any partial order to a total one.

- All well-ordered structures.
- All (weakly) o-minimal structures (every definable 1-dimensional set is a finite union of points and convex sets).
- All (weakly-)quasi-o-minimal structures.
 - Prior to our work, the only results in this direction were when the partial order was 1-dimensional (just a subset of M).
- MacPherson and Steinhorn did the case when M was o-minimal.
- ullet Felgner and Truss did the case when M was well-ordered, essentially by the same method as our proof.

A structure M has OE if it definably extends any partial order to a total one.

- All well-ordered structures.
- All (weakly) o-minimal structures (every definable 1-dimensional set is a finite union of points and convex sets).
- All (weakly-)quasi-o-minimal structures.
 - Prior to our work, the only results in this direction were when the partial order was 1-dimensional (just a subset of M).
 - MacPherson and Steinhorn did the case when M was o-minimal.
- ullet Felgner and Truss did the case when M was well-ordered, essentially by the same method as our proof.

A structure M has OE if it definably extends any partial order to a total one.

- All well-ordered structures.
- All (weakly) o-minimal structures (every definable 1-dimensional set is a finite union of points and convex sets).
- All (weakly-)quasi-o-minimal structures.
 - Prior to our work, the only results in this direction were when the partial order was 1-dimensional (just a subset of M).
- ullet MacPherson and Steinhorn did the case when M was o-minimal.
- Felgner and Truss did the case when M was well-ordered, essentially by the same method as our proof.

A structure M has OE if it definably extends any partial order to a total one.

- All well-ordered structures.
- All (weakly) o-minimal structures (every definable 1-dimensional set is a finite union of points and convex sets).
- All (weakly-)quasi-o-minimal structures.
 - Prior to our work, the only results in this direction were when the partial order was 1-dimensional (just a subset of M).
- ullet MacPherson and Steinhorn did the case when M was o-minimal.
- Felgner and Truss did the case when M was well-ordered, essentially by the same method as our proof.

- Our work hinges on an easy observation: that any family of sets induces a partial order on its parameter set.
- Let $V = \{V(x) : x \in A\}$ be any family of sets, parameterized by A.

Definition

Let $\prec_{\mathcal{V}}$ be the partial order on A given by the relation $x \prec_{\mathcal{V}} y$ if and only if $V(x) \subsetneq V(y)$.

Definition

- Let $V = \{L(x) : x \in P\}$. Then \prec_{V} is a partial order on P.
- If $x \prec y$, then by transitivity and $x \in L(y) \setminus L(x)$, we have $x \prec_{\mathcal{V}} y$, so $\prec_{\mathcal{V}}$ is a partial order on P extending \prec .
- Thus, if we can linearly extend the partial order $\prec_{\mathcal{V}}$ for any definable family \mathcal{V} , we can linearly extend any partial order.

- Our work hinges on an easy observation: that any family of sets induces a partial order on its parameter set.
- Let $V = \{V(x) : x \in A\}$ be any family of sets, parameterized by A.

Definition

Let $\prec_{\mathcal{V}}$ be the partial order on A given by the relation $x \prec_{\mathcal{V}} y$ if and only if $V(x) \subsetneq V(y)$.

Definition

- Let $V = \{L(x) : x \in P\}$. Then $\prec_{\mathcal{V}}$ is a partial order on P.
- If $x \prec y$, then by transitivity and $x \in L(y) \setminus L(x)$, we have $x \prec_{\mathcal{V}} y$, so $\prec_{\mathcal{V}}$ is a partial order on P extending \prec .
- ullet Thus, if we can linearly extend the partial order $\prec_{\mathcal{V}}$ for any definable family \mathcal{V} , we can linearly extend any partial order.

- Our work hinges on an easy observation: that any family of sets induces a partial order on its parameter set.
- Let $V = \{V(x) : x \in A\}$ be any family of sets, parameterized by A.

Definition

Let $\prec_{\mathcal{V}}$ be the partial order on A given by the relation $x \prec_{\mathcal{V}} y$ if and only if $V(x) \subsetneq V(y)$.

Definition

- Let $V = \{L(x) : x \in P\}$. Then $\prec_{\mathcal{V}}$ is a partial order on P.
- If $x \prec y$, then by transitivity and $x \in L(y) \setminus L(x)$, we have $x \prec_{\mathcal{V}} y$, so $\prec_{\mathcal{V}}$ is a partial order on P extending \prec .
- Thus, if we can linearly extend the partial order $\prec_{\mathcal{V}}$ for any definable family \mathcal{V} , we can linearly extend any partial order.

- Our work hinges on an easy observation: that any family of sets induces a partial order on its parameter set.
- Let $V = \{V(x) : x \in A\}$ be any family of sets, parameterized by A.

Definition

Let $\prec_{\mathcal{V}}$ be the partial order on A given by the relation $x \prec_{\mathcal{V}} y$ if and only if $V(x) \subsetneq V(y)$.

Definition

- Let $V = \{L(x) : x \in P\}$. Then \prec_{V} is a partial order on P.
- If $x \prec y$, then by transitivity and $x \in L(y) \setminus L(x)$, we have $x \prec_{\mathcal{V}} y$, so $\prec_{\mathcal{V}}$ is a partial order on P extending \prec .
- Thus, if we can linearly extend the partial order $\prec_{\mathcal{V}}$ for any definable family \mathcal{V} , we can linearly extend any partial order.

- Our work hinges on an easy observation: that any family of sets induces a partial order on its parameter set.
- Let $V = \{V(x) : x \in A\}$ be any family of sets, parameterized by A.

Definition

Let $\prec_{\mathcal{V}}$ be the partial order on A given by the relation $x \prec_{\mathcal{V}} y$ if and only if $V(x) \subsetneq V(y)$.

Definition

- Let $V = \{L(x) : x \in P\}$. Then \prec_{V} is a partial order on P.
- If $x \prec y$, then by transitivity and $x \in L(y) \setminus L(x)$, we have $x \prec_{\mathcal{V}} y$, so $\prec_{\mathcal{V}}$ is a partial order on P extending \prec .
- ullet Thus, if we can linearly extend the partial order $\prec_{\mathcal{V}}$ for any definable family \mathcal{V} , we can linearly extend any partial order.

- Our work hinges on an easy observation: that any family of sets induces a partial order on its parameter set.
- Let $V = \{V(x) : x \in A\}$ be any family of sets, parameterized by A.

Definition

Let $\prec_{\mathcal{V}}$ be the partial order on A given by the relation $x \prec_{\mathcal{V}} y$ if and only if $V(x) \subsetneq V(y)$.

Definition

- Let $V = \{L(x) : x \in P\}$. Then \prec_{V} is a partial order on P.
- If $x \prec y$, then by transitivity and $x \in L(y) \setminus L(x)$, we have $x \prec_{\mathcal{V}} y$, so $\prec_{\mathcal{V}}$ is a partial order on P extending \prec .
- Thus, if we can linearly extend the partial order $\prec_{\mathcal{V}}$ for any definable family \mathcal{V} , we can linearly extend any partial order.

- Our work hinges on an easy observation: that any family of sets induces a partial order on its parameter set.
- Let $V = \{V(x) : x \in A\}$ be any family of sets, parameterized by A.

Definition

Let $\prec_{\mathcal{V}}$ be the partial order on A given by the relation $x \prec_{\mathcal{V}} y$ if and only if $V(x) \subsetneq V(y)$.

Definition

- Let $V = \{L(x) : x \in P\}$. Then $\prec_{\mathcal{V}}$ is a partial order on P.
- If $x \prec y$, then by transitivity and $x \in L(y) \setminus L(x)$, we have $x \prec_{\mathcal{V}} y$, so $\prec_{\mathcal{V}}$ is a partial order on P extending \prec .
- Thus, if we can linearly extend the partial order $\prec_{\mathcal{V}}$ for any definable family \mathcal{V} , we can linearly extend any partial order.

To show M has OE, we need to show that if A is the parameter set of a definable family of sets \mathcal{V} , then A can be linearly ordered, compatible with $\prec_{\mathcal{V}}$.

Theorem

- Let A be the parameter set for $\mathcal{V} = \{V(x) : x \in A\}$, a definable family of sets in M^n for some $n \geq 0$. We first consider the case n = 1.
- For $x, y \in A$, let $B(x, y) = V(x) \triangle V(y)$. Since M is well-ordered, there is a least element of B(x, y). Then for $x, y \in A$, let $x \prec y$ if $t \in V(y)$ (so $t \notin V(x)$).
- If x and y are still unordered, then V(x) = V(y). Order x and y lexicographically.

To show M has OE, we need to show that if A is the parameter set of a definable family of sets \mathcal{V} , then A can be linearly ordered, compatible with $\prec_{\mathcal{V}}$.

Theorem

- Let A be the parameter set for $\mathcal{V} = \{V(x) : x \in A\}$, a definable family of sets in M^n for some $n \geq 0$. We first consider the case n = 1.
- For $x, y \in A$, let $B(x, y) = V(x) \triangle V(y)$. Since M is well-ordered, there is a least element of B(x, y). Then for $x, y \in A$, let $x \prec y$ if $t \in V(y)$ (so $t \notin V(x)$).
- If x and y are still unordered, then V(x) = V(y). Order x and y lexicographically.

To show M has OE, we need to show that if A is the parameter set of a definable family of sets \mathcal{V} , then A can be linearly ordered, compatible with $\prec_{\mathcal{V}}$.

Theorem

- Let A be the parameter set for $\mathcal{V} = \{V(x) : x \in A\}$, a definable family of sets in M^n for some $n \ge 0$. We first consider the case n = 1.
- For $x, y \in A$, let $B(x, y) = V(x) \triangle V(y)$. Since M is well-ordered, there is a least element of B(x, y). Then for $x, y \in A$, let $x \prec y$ if $t \in V(y)$ (so $t \notin V(x)$).
- If x and y are still unordered, then V(x) = V(y). Order x and y lexicographically.

To show M has OE, we need to show that if A is the parameter set of a definable family of sets \mathcal{V} , then A can be linearly ordered, compatible with $\prec_{\mathcal{V}}$.

Theorem

- Let A be the parameter set for $\mathcal{V} = \{V(x) : x \in A\}$, a definable family of sets in M^n for some $n \ge 0$. We first consider the case n = 1.
- For $x, y \in A$, let $B(x, y) = V(x) \triangle V(y)$. Since M is well-ordered, there is a least element of B(x, y). Then for $x, y \in A$, let $x \prec y$ if $t \in V(y)$ (so $t \notin V(x)$).
- If x and y are still unordered, then V(x) = V(y). Order x and y lexicographically.

To show M has OE, we need to show that if A is the parameter set of a definable family of sets \mathcal{V} , then A can be linearly ordered, compatible with $\prec_{\mathcal{V}}$.

Theorem

- Let A be the parameter set for $\mathcal{V} = \{V(x) : x \in A\}$, a definable family of sets in M^n for some $n \ge 0$. We first consider the case n = 1.
- For $x, y \in A$, let $B(x, y) = V(x) \triangle V(y)$. Since M is well-ordered, there is a least element of B(x, y). Then for $x, y \in A$, let $x \prec y$ if $t \in V(y)$ (so $t \notin V(x)$).
- If x and y are still unordered, then V(x) = V(y). Order x and y lexicographically.

- For $t \in M$ and any set $X \subseteq M^n$, let $X_t = \{y : \langle t, y \rangle \in X\}$, the fiber of X over t.
- For higher dimensions, we use the fact that for any $t \in M$, we can consider the family $\mathcal{V}_t = \{V(x)_t : x \in A\}$.
- This induces a partial order \prec_t on A.
- The collection V_t is a family of (n-1)-dimensional sets and so, by induction, we may extend each \prec_t to a linear order on A, uniformly in t.
- Instead of letting $B(x,y) = V(x) \triangle V(y)$, we set $B(x,y) = \{t : V(x)_t \neq V(y)_t\}$. Then we let $x \prec y$ if $x \prec_t y$ for t the least element of B(x,y).

- For $t \in M$ and any set $X \subseteq M^n$, let $X_t = \{y : \langle t, y \rangle \in X\}$, the fiber of X over t.
- For higher dimensions, we use the fact that for any $t \in M$, we can consider the family $\mathcal{V}_t = \{V(x)_t : x \in A\}$.
- This induces a partial order \prec_t on A.
- The collection V_t is a family of (n-1)-dimensional sets and so, by induction, we may extend each \prec_t to a linear order on A, uniformly in t.
- Instead of letting $B(x,y) = V(x) \triangle V(y)$, we set $B(x,y) = \{t : V(x)_t \neq V(y)_t\}$. Then we let $x \prec y$ if $x \prec_t y$ for t the least element of B(x,y).

- For $t \in M$ and any set $X \subseteq M^n$, let $X_t = \{y : \langle t, y \rangle \in X\}$, the fiber of X over t.
- For higher dimensions, we use the fact that for any $t \in M$, we can consider the family $\mathcal{V}_t = \{V(x)_t : x \in A\}$.
- This induces a partial order \prec_t on A.
- The collection V_t is a family of (n-1)-dimensional sets and so, by induction, we may extend each \prec_t to a linear order on A, uniformly in t.
- Instead of letting $B(x,y) = V(x) \triangle V(y)$, we set $B(x,y) = \{t : V(x)_t \neq V(y)_t\}$. Then we let $x \prec y$ if $x \prec_t y$ for t the least element of B(x,y).

- For $t \in M$ and any set $X \subseteq M^n$, let $X_t = \{y : \langle t, y \rangle \in X\}$, the fiber of X over t.
- For higher dimensions, we use the fact that for any $t \in M$, we can consider the family $\mathcal{V}_t = \{V(x)_t : x \in A\}$.
- This induces a partial order \prec_t on A.
- The collection \mathcal{V}_t is a family of (n-1)-dimensional sets and so, by induction, we may extend each \prec_t to a linear order on A, uniformly in t.
- Instead of letting $B(x,y) = V(x) \triangle V(y)$, we set $B(x,y) = \{t : V(x)_t \neq V(y)_t\}$. Then we let $x \prec y$ if $x \prec_t y$ for t the least element of B(x,y).

- For $t \in M$ and any set $X \subseteq M^n$, let $X_t = \{y : \langle t, y \rangle \in X\}$, the fiber of X over t.
- For higher dimensions, we use the fact that for any $t \in M$, we can consider the family $\mathcal{V}_t = \{V(x)_t : x \in A\}$.
- This induces a partial order \prec_t on A.
- The collection \mathcal{V}_t is a family of (n-1)-dimensional sets and so, by induction, we may extend each \prec_t to a linear order on A, uniformly in t.
- Instead of letting $B(x,y) = V(x) \triangle V(y)$, we set $B(x,y) = \{t : V(x)_t \neq V(y)_t\}$. Then we let $x \prec y$ if $x \prec_t y$ for t the least element of B(x,y).

The general case

The previous proof gives the principle for subsequent proofs: if there is some consistent way to pick out a particular part of B(x, y), for which each \prec_t gives the same answer about x and y, then we can use that answer to order x and y.

Theorem (R., Steinhorn)

Let M be an ordered structure such that, for any definable $A, C \subseteq M$, there is some initial segment of A either contained in or disjoint from C. Then M has OE.

The general case

The previous proof gives the principle for subsequent proofs: if there is some consistent way to pick out a particular part of B(x, y), for which each \prec_t gives the same answer about x and y, then we can use that answer to order x and y.

Theorem (R., Steinhorn)

Let M be an ordered structure such that, for any definable $A, C \subseteq M$, there is some initial segment of A either contained in or disjoint from C. Then M has OE.

- As before, we restrict to the 1-dimensional case for simplicity.
- The proof proceeds as in the well-ordered case until we have $B(x,y) = V(x) \triangle V(y)$.
- Consider the definable set $\{t: t \in V(y) \setminus V(x)\}$. By hypothesis, this set either contains or is disjoint from an initial segment of B(x, y).
- If it contains an initial segment of B(x, y), then set $x \prec y$. Otherwise, let $y \prec x$.
- It is then routine to verify that this yields a nearly-total order, which is completed lexicographically.

- As before, we restrict to the 1-dimensional case for simplicity.
- The proof proceeds as in the well-ordered case until we have $B(x,y) = V(x) \triangle V(y)$.
- Consider the definable set $\{t: t \in V(y) \setminus V(x)\}$. By hypothesis, this set either contains or is disjoint from an initial segment of B(x, y).
- If it contains an initial segment of B(x, y), then set $x \prec y$. Otherwise, let $y \prec x$.
- It is then routine to verify that this yields a nearly-total order, which is completed lexicographically.

- As before, we restrict to the 1-dimensional case for simplicity.
- The proof proceeds as in the well-ordered case until we have $B(x,y) = V(x) \triangle V(y)$.
- Consider the definable set $\{t: t \in V(y) \setminus V(x)\}$. By hypothesis, this set either contains or is disjoint from an initial segment of B(x, y).
- If it contains an initial segment of B(x, y), then set $x \prec y$. Otherwise, let $y \prec x$.
- It is then routine to verify that this yields a nearly-total order, which is completed lexicographically.

- As before, we restrict to the 1-dimensional case for simplicity.
- The proof proceeds as in the well-ordered case until we have $B(x,y) = V(x) \triangle V(y)$.
- Consider the definable set $\{t: t \in V(y) \setminus V(x)\}$. By hypothesis, this set either contains or is disjoint from an initial segment of B(x, y).
- If it contains an initial segment of B(x, y), then set $x \prec y$. Otherwise, let $y \prec x$.
- It is then routine to verify that this yields a nearly-total order, which is completed lexicographically.

- As before, we restrict to the 1-dimensional case for simplicity.
- The proof proceeds as in the well-ordered case until we have $B(x,y) = V(x) \triangle V(y)$.
- Consider the definable set $\{t: t \in V(y) \setminus V(x)\}$. By hypothesis, this set either contains or is disjoint from an initial segment of B(x, y).
- If it contains an initial segment of B(x, y), then set $x \prec y$. Otherwise, let $y \prec x$.
- It is then routine to verify that this yields a nearly-total order, which is completed lexicographically.

Theorem

- The theorem immediately implies our results on well-ordered, o-minimal, and weakly o-minimal structures.
- Due to results of Onshuus, Steinhorn; R., any definable linear order in an o-minimal structure (with EI) embeds definably in a lexicographic order.
- Thus any definable partial order in an o-minimal structure (with EI) embeds in a reduct of a lexicographic order.
- Note that while the hypothesis on M in the theorem is first-order, the properties of being well-ordered or weakly o-minimal are not first-order.
- Thus, if some model of the theory of M is weakly o-minimal or well-ordered, then M satisfies the requisite hypothesis.

Theorem

- The theorem immediately implies our results on well-ordered, o-minimal, and weakly o-minimal structures.
- Due to results of Onshuus, Steinhorn; R., any definable linear order in an o-minimal structure (with EI) embeds definably in a lexicographic order.
- Thus any definable partial order in an o-minimal structure (with EI) embeds in a reduct of a lexicographic order.
- Note that while the hypothesis on M in the theorem is first-order, the properties of being well-ordered or weakly o-minimal are not first-order.
- Thus, if *some* model of the theory of *M* is weakly o-minimal or well-ordered, then *M* satisfies the requisite hypothesis.

Theorem

- The theorem immediately implies our results on well-ordered, o-minimal, and weakly o-minimal structures.
- Due to results of Onshuus, Steinhorn; R., any definable linear order in an o-minimal structure (with EI) embeds definably in a lexicographic order.
- Thus any definable partial order in an o-minimal structure (with EI) embeds in a reduct of a lexicographic order.
- Note that while the hypothesis on M in the theorem is first-order, the properties of being well-ordered or weakly o-minimal are not first-order.
- Thus, if *some* model of the theory of *M* is weakly o-minimal or well-ordered, then *M* satisfies the requisite hypothesis.

Theorem

- The theorem immediately implies our results on well-ordered, o-minimal, and weakly o-minimal structures.
- Due to results of Onshuus, Steinhorn; R., any definable linear order in an o-minimal structure (with EI) embeds definably in a lexicographic order.
- Thus any definable partial order in an o-minimal structure (with EI) embeds in a reduct of a lexicographic order.
- Note that while the hypothesis on M in the theorem is first-order, the properties of being well-ordered or weakly o-minimal are not first-order.
- Thus, if some model of the theory of M is weakly o-minimal or well-ordered, then M satisfies the requisite hypothesis.

Theorem

- The theorem immediately implies our results on well-ordered, o-minimal, and weakly o-minimal structures.
- Due to results of Onshuus, Steinhorn; R., any definable linear order in an o-minimal structure (with EI) embeds definably in a lexicographic order.
- Thus any definable partial order in an o-minimal structure (with EI) embeds in a reduct of a lexicographic order.
- Note that while the hypothesis on M in the theorem is first-order, the properties of being well-ordered or weakly o-minimal are not first-order.
- Thus, if some model of the theory of M is weakly o-minimal or well-ordered, then M satisfies the requisite hypothesis.

Theorem

- The theorem immediately implies our results on well-ordered, o-minimal, and weakly o-minimal structures.
- Due to results of Onshuus, Steinhorn; R., any definable linear order in an o-minimal structure (with EI) embeds definably in a lexicographic order.
- Thus any definable partial order in an o-minimal structure (with EI) embeds in a reduct of a lexicographic order.
- Note that while the hypothesis on M in the theorem is first-order, the properties of being well-ordered or weakly o-minimal are not first-order.
- Thus, if some model of the theory of M is weakly o-minimal or well-ordered, then M satisfies the requisite hypothesis.

Extending the proof

- As referred to before, if there is some consistent way to pick out a particular part of B(x, y), for which each \prec_t gives the same answer about x and y, then we can use that answer to order x and y.
- We thus describe a class of structures for which a more intricate model-theoretic argument works.

Extending the proof

- As referred to before, if there is some consistent way to pick out a particular part of B(x, y), for which each \prec_t gives the same answer about x and y, then we can use that answer to order x and y.
- We thus describe a class of structures for which a more intricate model-theoretic argument works.

Definition

- This is a natural generalization of the previous property we looked at.
- Instead of looking at the whole structure when we intersect sets, we restrict to a ∅-definable type.
- \bullet This avoids problems caused by things like $\emptyset\mbox{-definable}$ predicates.

Definition

- This is a natural generalization of the previous property we looked at.
- Instead of looking at the whole structure when we intersect sets, we restrict to a ∅-definable type.
- \bullet This avoids problems caused by things like $\emptyset\mbox{-definable}$ predicates.

Definition

- This is a natural generalization of the previous property we looked at.
- Instead of looking at the whole structure when we intersect sets, we restrict to a \emptyset -definable type.
- \bullet This avoids problems caused by things like $\emptyset\mbox{-definable}$ predicates.

Definition

- This is a natural generalization of the previous property we looked at.
- Instead of looking at the whole structure when we intersect sets, we restrict to a \emptyset -definable type.
- ullet This avoids problems caused by things like \emptyset -definable predicates.

Lemma

If M has (\ddagger) , then, given A and C, we may actually replace the type p in the statement of (\ddagger) by some formula $\varphi \in p$. Thus some initial segment of $\varphi(M) \cap A$ is contained in or disjoint from C. Moreover, φ is independent of the parameters used to define A, C.

The lemma comes from a straightforward use of compactness, and allows us to replace types by formulas.

Theorem (R., Steinhorn)

Let M be an ω -saturated ordered structure with (\ddagger). Then M has OE.

Lemma

If M has (\ddagger) , then, given A and C, we may actually replace the type p in the statement of (\ddagger) by some formula $\varphi \in p$. Thus some initial segment of $\varphi(M) \cap A$ is contained in or disjoint from C. Moreover, φ is independent of the parameters used to define A, C.

The lemma comes from a straightforward use of compactness, and allows us to replace types by formulas.

Theorem (R., Steinhorn)

Let M be an ω -saturated ordered structure with (‡). Then M has OE.

Lemma

If M has (\ddagger) , then, given A and C, we may actually replace the type p in the statement of (\ddagger) by some formula $\varphi \in p$. Thus some initial segment of $\varphi(M) \cap A$ is contained in or disjoint from C. Moreover, φ is independent of the parameters used to define A, C.

The lemma comes from a straightforward use of compactness, and allows us to replace types by formulas.

Theorem (R., Steinhorn)

Let M be an ω -saturated ordered structure with (\ddagger). Then M has OE.

Lemma

If M has (\ddagger) , then, given A and C, we may actually replace the type p in the statement of (\ddagger) by some formula $\varphi \in p$. Thus some initial segment of $\varphi(M) \cap A$ is contained in or disjoint from C. Moreover, φ is independent of the parameters used to define A, C.

The lemma comes from a straightforward use of compactness, and allows us to replace types by formulas.

Theorem (R., Steinhorn)

Let M be an ω -saturated ordered structure with (\ddagger). Then M has OE.

- This theorem most directly deals with quasi-o-minimal structures: ordered structures in which every definable set is (uniformly) a finite Boolean combination of points, intervals, and ∅-definable sets.
- We can also weaken "interval" to "convex set," obtaining weakly-quasi-o-minimal structures.
- One might hope that (‡) held for all "reasonable" "tame" ordered structures. However . . .
- There is a dp-minimal (even VC-minimal) ordered structure that does not have (‡).

- This theorem most directly deals with quasi-o-minimal structures: ordered structures in which every definable set is (uniformly) a finite Boolean combination of points, intervals, and ∅-definable sets.
- We can also weaken "interval" to "convex set," obtaining weakly-quasi-o-minimal structures.
- One might hope that (‡) held for all "reasonable" "tame" ordered structures. However . . .
- There is a dp-minimal (even VC-minimal) ordered structure that does not have (‡).

- This theorem most directly deals with quasi-o-minimal structures: ordered structures in which every definable set is (uniformly) a finite Boolean combination of points, intervals, and ∅-definable sets.
- We can also weaken "interval" to "convex set," obtaining weakly-quasi-o-minimal structures.
- One might hope that (‡) held for all "reasonable" "tame" ordered structures. However . . .
- There is a dp-minimal (even VC-minimal) ordered structure that does not have (‡).

- This theorem most directly deals with quasi-o-minimal structures: ordered structures in which every definable set is (uniformly) a finite Boolean combination of points, intervals, and ∅-definable sets.
- We can also weaken "interval" to "convex set," obtaining weakly-quasi-o-minimal structures.
- One might hope that (‡) held for all "reasonable" "tame" ordered structures. However . . .
- There is a dp-minimal (even VC-minimal) ordered structure that does not have (‡).

- Let $M = \langle \mathbb{Q} \times \mathbb{Q}, <, E, R \rangle$, where
 - \bigcirc < orders $\mathbb{Q} \times \mathbb{Q}$ lexicographically;
 - ② R is an equivalence relation such that R(x, y) holds iff x and y lie in the same copy of \mathbb{Q} .
 - 3 *E* is an equivalence relation refining each *R*-equivalence class into two dense equivalence classes.
- It is not hard to see that this structure has quantifier elimination and is therefore dp-minimal (and even VC-minimal), and has only one type over \emptyset .
- But for any a, the set R(a, M) is neither contained in nor disjoint from the set E(a, M), so M does not have \ddagger .

- Let $M = \langle \mathbb{Q} \times \mathbb{Q}, <, E, R \rangle$, where
 - \bullet < orders $\mathbb{Q} \times \mathbb{Q}$ lexicographically;
 - ② R is an equivalence relation such that R(x,y) holds iff x and y lie in the same copy of \mathbb{Q} .
 - 3 *E* is an equivalence relation refining each *R*-equivalence class into two dense equivalence classes.
- It is not hard to see that this structure has quantifier elimination and is therefore dp-minimal (and even VC-minimal), and has only one type over \emptyset .
- But for any a, the set R(a, M) is neither contained in nor disjoint from the set E(a, M), so M does not have \ddagger .

- Let $M = \langle \mathbb{Q} \times \mathbb{Q}, <, E, R \rangle$, where
 - $\mathbf{0}$ < orders $\mathbb{Q} \times \mathbb{Q}$ lexicographically;
 - ② R is an equivalence relation such that R(x, y) holds iff x and y lie in the same copy of \mathbb{Q} .
 - 3 *E* is an equivalence relation refining each *R*-equivalence class into two dense equivalence classes.
- It is not hard to see that this structure has quantifier elimination and is therefore dp-minimal (and even VC-minimal), and has only one type over \emptyset .
- But for any a, the set R(a, M) is neither contained in nor disjoint from the set E(a, M), so M does not have \ddagger .

- Let $M = \langle \mathbb{Q} \times \mathbb{Q}, <, E, R \rangle$, where
 - \bullet < orders $\mathbb{Q} \times \mathbb{Q}$ lexicographically;
 - ② R is an equivalence relation such that R(x, y) holds iff x and y lie in the same copy of \mathbb{Q} .
 - 3 *E* is an equivalence relation refining each *R*-equivalence class into two dense equivalence classes.
- It is not hard to see that this structure has quantifier elimination and is therefore dp-minimal (and even VC-minimal), and has only one type over \emptyset .
- But for any a, the set R(a, M) is neither contained in nor disjoint from the set E(a, M), so M does not have \ddagger .

- Let $M = \langle \mathbb{Q} \times \mathbb{Q}, <, E, R \rangle$, where
 - $\mathbf{0}$ < orders $\mathbb{Q} \times \mathbb{Q}$ lexicographically;
 - ② R is an equivalence relation such that R(x, y) holds iff x and y lie in the same copy of \mathbb{Q} .
 - 3 *E* is an equivalence relation refining each *R*-equivalence class into two dense equivalence classes.
- It is not hard to see that this structure has quantifier elimination and is therefore dp-minimal (and even VC-minimal), and has only one type over \emptyset .
- But for any a, the set R(a, M) is neither contained in nor disjoint from the set E(a, M), so M does not have \ddagger .

- Let $M = \langle \mathbb{Q} \times \mathbb{Q}, <, E, R \rangle$, where
 - $oldsymbol{0}$ < orders $\mathbb{Q} \times \mathbb{Q}$ lexicographically;
 - ② R is an equivalence relation such that R(x, y) holds iff x and y lie in the same copy of \mathbb{Q} .
 - \odot E is an equivalence relation refining each R-equivalence class into two dense equivalence classes.
- It is not hard to see that this structure has quantifier elimination and is therefore dp-minimal (and even VC-minimal), and has only one type over \emptyset .
- But for any a, the set R(a, M) is neither contained in nor disjoint from the set E(a, M), so M does not have \ddagger .

- While a wide variety of ordered structures have OE, there are ordered structures without OE.
- Note, however, that this structure has the Independence Property.
- Thus, the question remains whether there is a totally ordered NIP (or dp-minimal, or VC-minimal) structure without OE.

- While a wide variety of ordered structures have OE, there are ordered structures without OE.
- Note, however, that this structure has the Independence Property.
- Thus, the question remains whether there is a totally ordered NIP (or dp-minimal, or VC-minimal) structure without OE.

- While a wide variety of ordered structures have OE, there are ordered structures without OE.
- Note, however, that this structure has the Independence Property.
- Thus, the question remains whether there is a totally ordered NIP (or dp-minimal, or VC-minimal) structure without OE.

- While a wide variety of ordered structures have OE, there are ordered structures without OE.
- Note, however, that this structure has the Independence Property.
- Thus, the question remains whether there is a totally ordered NIP (or dp-minimal, or VC-minimal) structure without OE.