Result

Interpretable groups are definable

Janak Ramakrishnan

CMAF, University of Lisbon http://janak.org/talks/lisbon-int-groups.pdf

20 October 2011

Strategy

Our strategy requires a number of approaches on different aspects of o-minimality.

- As with definable groups, we endow *G* with a group topology with a definable basis.
- When G is definably simple (non-abelian with no definable nontrivial normal subgroup) and definably connected, we can repeat the proof of [PPS] using this group topology.
- The proof of [PPS] yields an embedding of G into GL(n, R) for some definable real closed field R. Since GL(n, R) is a definable group, this finishes the theorem.
- When G is definably compact, we use a strategy similar to Edmundo's in the case of solvable groups to obtain strong definable choice for M^{eq} -definable subsets of G.
- Strong definable choice means that for any definable family
 {X_t ⊆ G : t ∈ T}, there is a definable function f : T → G
 such that f(t) ∈ X_t and f(t) = f(s) if X_t = X_s.

Theorem

Let G be an interpretable group in an arbitrary dense o-minimal structure M. Then G is definably isomorphic to a definable group that is a subset of a cartesian product of one-dimensional definable groups.

- Note: the definable isomorphism may require more parameters than those used to define *G*.
- When *M* expands a group, the theorem is trivial. Thus, the principle of the proof is to use the existence of the group *G* to accomplish what the group on *M* would normally do.

- A general result: for interpretable X/E, we can take X ⊆ I₁ × · · · × I_k, with each interval I_j the image of X/E under a definable map f_j.
- Applying this result to definably compact G and using strong definable choice on the sets given by the preimages of the f_j 's, we have one-dimensional subsets of G.
- We prove a general result that any one-dimensional equivalence relation can be eliminated that is, if $\dim(X/E) = 1$, then X/E is in definable bijection with a one-dimensional definable set.
- Thus, any one-dimensional subset of *G* is in definable bijection with a one-dimensional subset of *M*.
- We want these one-dimensional subsets to be embedded in definable groups, so we can definably choose representatives of each equivalence class in *G*.
- We then prove that if f : I × J → M is a definable function, monotonic in both coordinates, then either I or J can be definably embedded in a definable one-dimensional group.
- Applying to the group operation on I_j yields the desired result.

In this talk, I will:

- define the topology;
- sketch the proof that one-dimensional quotients can be eliminated;
- give some idea why if f : I × J → M is a definable function monotonic in both coordinates, then either I or J can be definably embedded in a definable one-dimensional group.

- We suppose that each equivalence class is open in the first d coordinates. Then for each x ∈ π_{≤d}(U) ⊆ Mⁿ, the fiber of U above x has a single representative in each E-class.
- For $u \in U$, let U(u) be the fiber of U above u.
- Let u = ⟨x', x"⟩ be a generic element of U, and let V be a definable basis of neighborhoods of x", all contained in U(u). Then the family B = {gV : g ∈ G} is a basis for a topology (t-topology) making G into a topological group.
- The *t*-topology makes G into a topological group because it comes from the usual order topology, so there is a canonical homeomorphism between a neighborhood V of x" in U(u) and a *t*-neighborhood of u.
- Thus, definable maps from G to M^d and M^k to G are continuous at generic points, since we may actually consider them to be coming from/going to U(g) for g generic in U.
- By methods of Maříková, this shows that *G* is a definable group with the *t*-topology.

Topology

The definition of the topology depends on the following:

Lemma

Let X be a definable set and E a definable equivalence relation on X. Then there are definable Y and E' such that X/E = Y/E' and Y admits a partition into finitely many definable sets, U_1, \ldots, U_m , respecting E', such that in each set, all equivalence classes have dimension d and their projections onto the first d coordinates are open. Moreover, each U_i is an open subset of M^{k_i} .

Thus, from now on, we will assume that after a finite partition, all equivalence classes have the same homeomorphism type, and the base set X is open in its ambient space.

We do not have a finite atlas (yet) on G with this topology. However, what we have is not too bad:

Proposition

There are finitely many t-open definable sets W_1, \ldots, W_k whose union covers G. Each W_i is the (non-injective!) image of U_0 , where U_0 is a finite disjoint union of definable open subsets of various M^{r_i} 's.

This implies that every definable subset of G has finitely many definably connected components, and thus that many properties of definable groups in o-minimal structures still hold. In particular, this is enough for the definably simple non-abelian case, with [PPS]'s arguments.

One-dimensional interpretable sets

- The proof for definably compact groups goes by first showing that definably compact groups have strong definable choice.
- This then allows us to definably pick one-dimensional *interpretable* sets in the group *G*, into whose cartesian product we can suppose that *G* is embedded.
- Thus, if we can show that these one-dimensional interpretable sets are actually definable and embeddable in one-dimensional groups, we will be done.

Theorem

Let $\{X_t : t \in T\}$ be a definable family, with $T \subseteq M^{eq}$ and dim T = 1. Then there exists a definable injective map $f : T \to M^m$ for some m.

The theorem then lets us turn these one-dimensional interpretable sets into one-dimensional definable sets.

- Further partitioning X_t^0 , we can suppose that it is the graph of a function f_t on a cell C_t , with distinct X_t^0 's disjoint.
- By induction, we have the desired function for the family $\{C_t : t \in T'\}$, where T' is T modulo the equivalence relation $C_s = C_t$. So we need to separate out X_t 's projecting to the same C_t .
- For each C_t , if only finitely many X_t^0 project onto C_t , then we can take care of them.
- If infinitely many X_t^0 project onto C_t , then since dim T = 1, there are only finitely many such C_t . For each one, we can fix $\bar{a} \in C_t$, and define $g(t) = f_t(\bar{a})$.
- (This step fails in higher dimension, since we would have to pick infinitely many such points.)

- We perform o-minimal tricks to make all the X_t's cells in M^k of the same dimension r.
- If r = k, then each X_t is uniquely determined by its "boundary cells," and we are done by induction.
- There are two kinds of points in the X_t's those that belong to only finitely many X_t, and the others. We partition each X_t into these two sets, X⁰_t and X'_t.
- The union of all X'_t has dimension less than k, by straightforward dimension arguments, so it is done by induction.

Group-intervals

- We have now reduced the problem of definably compact *G* to showing that one-dimensional definable subsets of *G* embed in definable groups.
- Every point of such a set is non-trivial (has a definable group chunk) around it. But we need a group chunk that contains the whole set, up to a finite partition.

Definition

Let I be a gp-short interval if after a finite partition, it can be definably endowed with the structure of a group chunk, with 0 either an endpoint of I or in I.

Lemma

Let $\{I_t : t \in T\}$ be a definable family of gp-short intervals, all with the same left endpoint. Then $\bigcup_t I_t$ is a gp-short interval.

No demands are made on how the group chunks on I, I_t are defined.

Everything Interesting is gp-short

Proof:

- Let (a, b) = ∪_t I_t. If we can find c ∈ (a, b) such that (c, b) is a group interval, then we will be done, since some I_t contains (a, c).
- If there is c ∈ (a, b) with a definable injection from (c, b) to (d, e) for some a < d < e < b, again we are done.
- Thus, we may assume that there are no such maps for any c, and thus that our structure has no "poles," treating b like ∞.
- This allows us to pick a nonstandard c < b, show that (a, c) is gp-short, and then bring down this group operation to the trace of (a, c) on M, which is just (a, b).

- The standard machinery of local modularity gives a group operation around $x_0 \in I$ by
 - $x_1 + x_2 = x_3 \iff f_{x_2}^{-1} f_{x_3} = f_{x_0}^{-1} f_{x_1}.$
- This operation is valid whenever the intervals (x_1, x_0) and (x_2, x_0) are gp-short.
- But being gp-short is not a definable property, so the operation "spills over" onto a longer interval, which is necessarily gp-long, contradiction.

Theorem

Let I, J be intervals, and $f : I \times J \rightarrow M$ a definable function strictly monotone in both variables. Then at least one of I or J is gp-short. Some steps on the way to the proof:

- If $f : I_1 \times \ldots \times I_k \to J$ is definable with J gp-short and all I_i gp-long, then f is constant at every generic point.
- If f : I₁ × I₂ × J → M is definable with J gp-short but I₁, I₂ gp-long, then for generic a ∈ I₁ × I₂, the function f(a, -) is determined (up to finite) by f(a, d) for any generic d.
- If f : I₁ × I₂ × I₃ → M is definable with I₁, I₂, I₃ gp-long, then we can partition I₁, I₂, I₃ so that the functions f(a, -) and f(b, -) on I₃ are identical if they ever have the same value.
- So families of functions parameterized by gp-long intervals are one-dimensional, i.e., locally modular.

Applying the Theorem

- By an argument, if h: I₁ × ... × I_{k+1} → M^k is a definable map injective in each coordinate separately, then at least one of I₁,..., I_{k+1} is gp-short.
- Let *I* be a one-dimensional set definable in *G*. Let *f_i* : *Iⁱ* → *G* be defined by *f_i(x₁,...,x_i) = x₁ ··· x_i*.
- Take k ≥ 1 maximal such that f_k is injective on B, some cartesian product of gp-long intervals in I^k.
- We will find a generic k + 1-tuple ⟨a₁,..., a_{k+1}⟩ ∈ I^{k+1} and a box B' around it such that f_{k+1}(B') is contained in f_k(B) · a_{k+1}.
- This is enough, because then we are mapping a k + 1-dimensional set injectively in each coordinate into a k-dimensional set.

- Define the equivalence relation E' on I^{k+1} by $xE'y \iff f_{k+1}(x) = f_{k+1}(y).$
- Since f_{k+1} is not injective on any gp-long box, this implies that [ā] is infinite.
- Because f_k ↾ B is injective, the projection of [ā] on the k + 1-coordinate is injective, and so the image of [ā] contains a gp-long interval, J.
- We can take J to be definable over parameters independent from ā. Then we can find a gp-long box B' containing ā such that every x ∈ B' has [x] projecting in the k + 1-coordinate onto J, and thus in particular containing a_{k+1}.