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Introduction Example Proof

Question

Let M be an o-minimal field. Let (P ,≺) be an M-definable total
linear order. What does P look like?

The simplest definable linear orders are the lexicographic ones on Mn.
We use <lex to denote the lexicographic order.

Obviously, a definable linear order can be a definable subset of such a
lexicographic order, or the image of such a subset under a definable
injection.

That’s it.
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Introduction Example Proof

Answer

Theorem A

Let M be an o-minimal field, and let (P ,≺) be an M-definable linear order

with n = dim(P). Then there is an injection, g : P → Mn+1, definable

over the same parameters as P, such that g embeds (P ,≺) in
(Mn+1, <lex), and the projection of g(P) on the (n + 1)-st coordinate is

finite.
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Introduction Example Proof

Prior Work

Steinhorn has unpublished work that implies Theorem A when
dim(P) = 1.

Steinhorn and Onshuus recently showed that a definable linear order
could be broken up into finitely many pieces, on each of which
Theorem A held.

They also noted that such a result has applications in economics.

However, their result did not say how the order compared elements in
different pieces, so the study of definable linear orders could not be
reduced to the study of definable subsets of lexicographic orders.
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Introduction Example Proof

One-dimensional interleaving

Example

Let P = (0, 1) ∪ (1, 2), with the order ≺ defined to agree with < on
(0, 1) × (0, 1) and (1, 2) × (1, 2), and defined as a ≺ b iff a ≤ b − 1 on
(0, 1) × (1, 2).

.25 ≺ .5 ≺ 1.5 ≺ .75 ≺ 1.8 ≺ 1.9

The embedding:

Send a ∈ (0, 1) to 〈a, 0〉. Send b ∈ (1, 2) to 〈b − 1, 1〉.
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Introduction Example Proof

Why n + 1

The example shows why we need the (n + 1)-st dimension – there can be
finitely many pieces that are “interleaving”. O-minimality guarantees that
there are not infinitely many.
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Introduction Example Proof

one dimension

One dimension: “monotonicity” for order

Lemma (Steinhorn, Onshuus and Steinhorn)

Let (P ,≺) be an M-definable linear order, with P ⊆ M. Then P can be

partitioned into finitely many points and intervals on each of which ≺ and

< either agree everywhere or disagree everywhere.
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Introduction Example Proof

one dimension

One dimension: strategy

After applying the monotonicity lemma, and with some definable
reversing maps (coming from the field), we will have P = I1 ∪ . . . ∪ Ik ,
with each Ij a point or an interval, and ≺ and < agreeing on each Ij .

By induction, we suppose that I1 ∪ . . . ∪ Ik−1 can be mapped to P ′, a
definable subset of M2 ordered lexicographically, and our task is to
insert Ik .

We can break Ik up into “well-behaved” pieces, relative to P ′, and
insert them one by one, keeping the remaining pieces “well-behaved”
with respect to our new P ′.

Janak Ramakrishnan (U. Lyon I) Linear orders in o-minimal fields 20 May 2010 8 / 14
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Introduction Example Proof

n dimensions

Dimension n: Two dimension-counters

Definition

For x ∈ P , let pdim(x) = min{dim((y , z)≺) | x ∈ (y , z)≺}.

pdim(x) measures what the dimension of P is in a ≺-neighborhood of x .

Definition

For x , y ∈ P , let xEy if the ≺-interval bounded by x and y has dimension
< n.

E is a ≺-convex equivalence relation on P .
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Introduction Example Proof

n dimensions

E -classes and pdim cells

Lemma

No E-class has dimension n.

If there were, we would have a definable n-dimensional ≺-convex set such
that any ≺-interval inside it had dimension < n. An argument shows that
this cannot happen.

Let C be a cell decomposition of P such that on each cell C ∈ C, we have
constant pdim.
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Introduction Example Proof

n dimensions

E -classes and pdim cells

Lemma

No E-class has dimension n.

If there were, we would have a definable n-dimensional ≺-convex set such
that any ≺-interval inside it had dimension < n. An argument shows that
this cannot happen.

Let C be a cell decomposition of P such that on each cell C ∈ C, we have
constant pdim.

Janak Ramakrishnan (U. Lyon I) Linear orders in o-minimal fields 20 May 2010 10 / 14



Introduction Example Proof

n dimensions

E -classes and pdim cells

Lemma

No E-class has dimension n.

If there were, we would have a definable n-dimensional ≺-convex set such
that any ≺-interval inside it had dimension < n. An argument shows that
this cannot happen.

Let C be a cell decomposition of P such that on each cell C ∈ C, we have
constant pdim.

Janak Ramakrishnan (U. Lyon I) Linear orders in o-minimal fields 20 May 2010 10 / 14



Introduction Example Proof

n dimensions

Induction or else

Lemma

If every open cell in C has pdim < n, then Theorem A follows.

The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by
induction, for each x ∈ P/E , the class [x ]E definably embeds in a
lexicographic order.

With some careful stitching together while keeping track of
dimensions, the theorem is proved.
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Introduction Example Proof

n dimensions

Or else

We know that there is an open cell, C , with pdim = n on C .

Lemma

n ≤ 1.

We follow a technique of Hasson and Onshuus, and pick a definable curve
Γ in C . After restricting/redefining Γ, we may suppose that “<” and ≺
agree on Γ.
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Introduction Example Proof

n dimensions

Fibers

Let T : P → Γ be defined by T (x) = inf≺{y ∈ Γ | y � x} and
B : T → Γ by B(x) = sup

≺
{y ∈ Γ | y � x}.

T (x) is the least element in Γ which is at least as big as x and B(x)
is the greatest element in Γ which is at most as big as x .

By fiber arguments, T−1(y) and B−1(y) have dimension < n for all
but finitely many points of Γ, and we may restrict to some piece of Γ
where k1 = dim(T−1(y)) and k2 = dim(B−1(y)) are constant.

Let b ≺ c be elements in this piece of Γ.

Looking again at fibers, n = dim((b, c)≺) ≤ 1 + k1, 1 + k2.

We want to show that at least one of k1, k2 is 0.

Janak Ramakrishnan (U. Lyon I) Linear orders in o-minimal fields 20 May 2010 13 / 14
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Introduction Example Proof

n dimensions

Bringing in pdim

Consider any a ∈ (b, c)≺ ∩ Γ. If k1, k2 6= 0, we can take d ∈ T−1(a)
and e ∈ B−1(a) with d , e 6= a.

Note that (d , a)≺ ⊆ T−1(a), and (a, e)≺ ⊆ B−1(a). Thus
dim((d , e)≺) ≤ dim(T−1(a) ∪ B−1(a)) ≤ max(k1, k2) < n. So
pdim(a) < n, contradiction.

Thus, one of k1 or k2 must be 0, so dim(P) = n ≤ 1 + 0.
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