Definable linear orders in o-minimal fields

Janak Ramakrishnan

Université Claude Bernard Lyon I Institut Camille Jordan

20 May 2010

2010 Model Theory Conference in Seoul http://janak.org/talks/korea.pdf

Introduction	Example	Proof
⊙●⊙⊙	oo	00000000
Question		

- Let *M* be an o-minimal field. Let (*P*, ≺) be an *M*-definable total linear order. What does *P* look like?
- The simplest definable linear orders are the lexicographic ones on Mⁿ.
 We use <_{lex} to denote the lexicographic order.
- Obviously, a definable linear order can be a definable subset of such a lexicographic order, or the image of such a subset under a definable injection.
- That's it.

Introduction o●oo	Example 00	Proof 00000000
Question		

- Let M be an o-minimal field. Let (P, ≺) be an M-definable total linear order. What does P look like?
- The simplest definable linear orders are the lexicographic ones on Mⁿ.
 We use <_{lex} to denote the lexicographic order.
- Obviously, a definable linear order can be a definable subset of such a lexicographic order, or the image of such a subset under a definable injection.
- That's it.

JUCSLI

Introduction o●oo	Example 00	Proof 00000000

Question

- Let *M* be an o-minimal field. Let (*P*, ≺) be an *M*-definable total linear order. What does *P* look like?
- The simplest definable linear orders are the lexicographic ones on Mⁿ.
 We use <_{lex} to denote the lexicographic order.
- Obviously, a definable linear order can be a definable subset of such a lexicographic order, or the image of such a subset under a definable injection.

• That's it.

Introduction o●oo	Example 00	Proof 00000000

Question

- Let *M* be an o-minimal field. Let (*P*, ≺) be an *M*-definable total linear order. What does *P* look like?
- The simplest definable linear orders are the lexicographic ones on Mⁿ.
 We use <_{lex} to denote the lexicographic order.
- Obviously, a definable linear order can be a definable subset of such a lexicographic order, or the image of such a subset under a definable injection.
- That's it.

Introduction Example	Proof
0000 00	0000000

Answer

Theorem A

Let M be an o-minimal field, and let (P, \prec) be an M-definable linear order with $n = \dim(P)$. Then there is an injection, $g : P \to M^{n+1}$, definable over the same parameters as P, such that g embeds (P, \prec) in $(M^{n+1}, <_{lex})$, and the projection of g(P) on the (n + 1)-st coordinate is finite.

Introduction	Example	Proof
0000		

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- They also noted that such a result has applications in economics.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.

Introduction		Proof
0000	00	00000000

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- They also noted that such a result has applications in economics.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.

Introduction	Example	Proof
0000	00	00000000

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- They also noted that such a result has applications in economics.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.

Introduction	Example	Proof
0000	00	00000000

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- They also noted that such a result has applications in economics.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.

Proof 00000000

One-dimensional interleaving

Example

Let $P = (0,1) \cup (1,2)$, with the order \prec defined to agree with < on $(0,1) \times (0,1)$ and $(1,2) \times (1,2)$, and defined as $a \prec b$ iff $a \leq b-1$ on $(0,1) \times (1,2)$.

$.25 \prec .5 \prec 1.5 \prec .75 \prec 1.8 \prec 1.9$

The embedding:

Send $a \in (0,1)$ to $\langle a, 0 \rangle$. Send $b \in (1,2)$ to $\langle b-1, 1 \rangle$.

Proof 00000000

One-dimensional interleaving

Example

Let $P = (0,1) \cup (1,2)$, with the order \prec defined to agree with < on $(0,1) \times (0,1)$ and $(1,2) \times (1,2)$, and defined as $a \prec b$ iff $a \leq b-1$ on $(0,1) \times (1,2)$.

$.25 \prec .5 \prec 1.5 \prec .75 \prec 1.8 \prec 1.9$

The embedding:

Send $a \in (0,1)$ to $\langle a, 0 \rangle$. Send $b \in (1,2)$ to $\langle b-1, 1 \rangle$.

Introduction	Example	Proof
0000	⊙●	00000000
Why $n+1$		

The example shows why we need the (n + 1)-st dimension – there can be finitely many pieces that are "interleaving". O-minimality guarantees that there are not infinitely many.

Example

Proof ●OOOOOOO

One dimension: "monotonicity" for order

Lemma (Steinhorn, Onshuus and Steinhorn)

Let (P, \prec) be an M-definable linear order, with $P \subseteq M$. Then P can be partitioned into finitely many points and intervals on each of which \prec and < either agree everywhere or disagree everywhere.

Introduction	Example	Proof
0000	00	o●oooooo
one dimension		

One dimension: strategy

- After applying the monotonicity lemma, and with some definable reversing maps (coming from the field), we will have $P = I_1 \cup \ldots \cup I_k$, with each I_i a point or an interval, and \prec and < agreeing on each I_i .
- By induction, we suppose that I₁ ∪ ... ∪ I_{k-1} can be mapped to P', a definable subset of M² ordered lexicographically, and our task is to insert I_k.
- We can break I_k up into "well-behaved" pieces, relative to P', and insert them one by one, keeping the remaining pieces "well-behaved" with respect to our new P'.

Introduction	Example	Proof
0000	00	o●oooooo
one dimension		

One dimension: strategy

- After applying the monotonicity lemma, and with some definable reversing maps (coming from the field), we will have $P = I_1 \cup \ldots \cup I_k$, with each I_j a point or an interval, and \prec and < agreeing on each I_j .
- By induction, we suppose that I₁ ∪ ... ∪ I_{k-1} can be mapped to P', a definable subset of M² ordered lexicographically, and our task is to insert I_k.
- We can break I_k up into "well-behaved" pieces, relative to P', and insert them one by one, keeping the remaining pieces "well-behaved" with respect to our new P'.

Introduction	Example	Proof
0000	00	o●oooooo
one dimension		

One dimension: strategy

- After applying the monotonicity lemma, and with some definable reversing maps (coming from the field), we will have $P = I_1 \cup \ldots \cup I_k$, with each I_i a point or an interval, and \prec and < agreeing on each I_i .
- By induction, we suppose that I₁ ∪ ... ∪ I_{k-1} can be mapped to P', a definable subset of M² ordered lexicographically, and our task is to insert I_k.
- We can break I_k up into "well-behaved" pieces, relative to P', and insert them one by one, keeping the remaining pieces "well-behaved" with respect to our new P'.

Example

Proof 0000000

Dimension n: Two dimension-counters

Definition

For $x \in P$, let $pdim(x) = min\{dim((y, z)_{\prec}) \mid x \in (y, z)_{\prec}\}.$

pdim(x) measures what the dimension of P is in a \prec -neighborhood of x.

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

Example

Proof 0000000

Dimension n: Two dimension-counters

Definition

For
$$x \in P$$
, let $pdim(x) = min\{dim((y, z)_{\prec}) \mid x \in (y, z)_{\prec}\}.$

pdim(x) measures what the dimension of P is in a \prec -neighborhood of x.

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

Example

Proof 0000000

Dimension n: Two dimension-counters

Definition

For
$$x \in P$$
, let $pdim(x) = min\{dim((y, z)_{\prec}) \mid x \in (y, z)_{\prec}\}.$

pdim(x) measures what the dimension of P is in a \prec -neighborhood of x.

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

Example

Proof 0000000

Dimension n: Two dimension-counters

Definition

For
$$x \in P$$
, let $pdim(x) = min\{dim((y, z)_{\prec}) \mid x \in (y, z)_{\prec}\}.$

pdim(x) measures what the dimension of P is in a \prec -neighborhood of x.

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

Proof 00000000

n dimensions

E-classes and pdim cells

Lemma

No E-class has dimension n.

If there were, we would have a definable *n*-dimensional \prec -convex set such that any \prec -interval inside it had dimension < n. An argument shows that this cannot happen.

Let C be a cell decomposition of P such that on each cell $C \in C$, we have constant pdim.

Proof 00000000

n dimensions

E-classes and pdim cells

Lemma

No E-class has dimension n.

If there were, we would have a definable *n*-dimensional \prec -convex set such that any \prec -interval inside it had dimension < n. An argument shows that this cannot happen.

Let C be a cell decomposition of P such that on each cell $C \in C$, we have constant pdim.

Proof 00000000

n dimensions

E-classes and pdim cells

Lemma

No E-class has dimension n.

If there were, we would have a definable *n*-dimensional \prec -convex set such that any \prec -interval inside it had dimension < n. An argument shows that this cannot happen.

Let C be a cell decomposition of P such that on each cell $C \in C$, we have constant pdim.

ntroduction	Example	Proof
2000	00	○○○○●○○○
7 dimensions		

Lemma

- The premise implies that P/E has dimension < n.
- By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.
- With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction	Example	Proof
0000	00	○○○○●○○○
n dimensions		

Lemma

- The premise implies that P/E has dimension < n.
- By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.
- With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction	Example	Proof
0000	00	○○○○●○○○
n dimensions		

Lemma

- The premise implies that P/E has dimension < n.
- By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.
- With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction	Example	Proof
0000	00	○○○○●○○○
n dimensions		

Lemma

- The premise implies that P/E has dimension < n.
- By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.
- With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction 0000	Example 00	Proof ○○○○○●○○
n dimensions		

Or else

We know that there is an open cell, C, with pdim = n on C.

Lemma

 $n \leq 1.$

We follow a technique of Hasson and Onshuus, and pick a definable curve Γ in C. After restricting/redefining Γ , we may suppose that "<" and \prec agree on Γ .

Introduction 0000	Example oo	Proof ○○○○○●○○
n dimensions		

Or else

We know that there is an open cell, C, with pdim = n on C.

Lemma	
$n \leq 1.$	

We follow a technique of Hasson and Onshuus, and pick a definable curve Γ in C. After restricting/redefining Γ , we may suppose that "<" and \prec agree on Γ .

Introduction 0000	Example 00	Proof ○○○○○●○○
n dimensions		

Or else

We know that there is an open cell, C, with pdim = n on C.

Lemma	
$n \leq 1$.	

We follow a technique of Hasson and Onshuus, and pick a definable curve Γ in *C*. After restricting/redefining Γ , we may suppose that "<" and \prec agree on Γ .

Introduction 0000	Example 00	Proof ○○○○○○●○
n dimensions		

- Let $T : P \to \Gamma$ be defined by $T(x) = \inf_{\prec} \{ y \in \Gamma \mid y \succeq x \}$ and $B : T \to \Gamma$ by $B(x) = \sup_{\prec} \{ y \in \Gamma \mid y \preceq x \}.$
- T(x) is the least element in Γ which is at least as big as x and B(x) is the greatest element in Γ which is at most as big as x.
- By fiber arguments, T⁻¹(y) and B⁻¹(y) have dimension < n for all but finitely many points of Γ, and we may restrict to some piece of Γ where k₁ = dim(T⁻¹(y)) and k₂ = dim(B⁻¹(y)) are constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers, $n = \dim((b, c)_{\prec}) \le 1 + k_1, 1 + k_2$.
- We want to show that at least one of k_1, k_2 is 0.

Introduction 0000	Example 00	Proof ○○○○○○●○
n dimensions		

- Let $T : P \to \Gamma$ be defined by $T(x) = \inf_{\prec} \{ y \in \Gamma \mid y \succeq x \}$ and $B : T \to \Gamma$ by $B(x) = \sup_{\prec} \{ y \in \Gamma \mid y \preceq x \}.$
- T(x) is the least element in Γ which is at least as big as x and B(x) is the greatest element in Γ which is at most as big as x.
- By fiber arguments, T⁻¹(y) and B⁻¹(y) have dimension < n for all but finitely many points of Γ, and we may restrict to some piece of Γ where k₁ = dim(T⁻¹(y)) and k₂ = dim(B⁻¹(y)) are constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers, $n = \dim((b, c)_{\prec}) \le 1 + k_1, 1 + k_2$.
- We want to show that at least one of k_1, k_2 is 0.

Introduction 0000	Example oo	Proof ○○○○○○●○
n dimensions		

- Let $T : P \to \Gamma$ be defined by $T(x) = \inf_{\prec} \{ y \in \Gamma \mid y \succeq x \}$ and $B : T \to \Gamma$ by $B(x) = \sup_{\prec} \{ y \in \Gamma \mid y \preceq x \}.$
- T(x) is the least element in Γ which is at least as big as x and B(x) is the greatest element in Γ which is at most as big as x.
- By fiber arguments, T⁻¹(y) and B⁻¹(y) have dimension < n for all but finitely many points of Γ, and we may restrict to some piece of Γ where k₁ = dim(T⁻¹(y)) and k₂ = dim(B⁻¹(y)) are constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers, $n = \dim((b, c)_{\prec}) \le 1 + k_1, 1 + k_2$.
- We want to show that at least one of k_1, k_2 is 0.

Introduction 0000	Example oo	Proof ○○○○○○●○
n dimensions		

- Let $T : P \to \Gamma$ be defined by $T(x) = \inf_{\prec} \{ y \in \Gamma \mid y \succeq x \}$ and $B : T \to \Gamma$ by $B(x) = \sup_{\prec} \{ y \in \Gamma \mid y \preceq x \}.$
- T(x) is the least element in Γ which is at least as big as x and B(x) is the greatest element in Γ which is at most as big as x.
- By fiber arguments, T⁻¹(y) and B⁻¹(y) have dimension < n for all but finitely many points of Γ, and we may restrict to some piece of Γ where k₁ = dim(T⁻¹(y)) and k₂ = dim(B⁻¹(y)) are constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers, $n = \dim((b, c)_{\prec}) \le 1 + k_1, 1 + k_2$.
- We want to show that at least one of k_1, k_2 is 0.

Introduction 0000	Example oo	Proof ○○○○○○●○
n dimensions		

- Let $T : P \to \Gamma$ be defined by $T(x) = \inf_{\prec} \{ y \in \Gamma \mid y \succeq x \}$ and $B : T \to \Gamma$ by $B(x) = \sup_{\prec} \{ y \in \Gamma \mid y \preceq x \}.$
- T(x) is the least element in Γ which is at least as big as x and B(x) is the greatest element in Γ which is at most as big as x.
- By fiber arguments, T⁻¹(y) and B⁻¹(y) have dimension < n for all but finitely many points of Γ, and we may restrict to some piece of Γ where k₁ = dim(T⁻¹(y)) and k₂ = dim(B⁻¹(y)) are constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers, $n = \dim((b, c)_{\prec}) \le 1 + k_1, 1 + k_2$.

• We want to show that at least one of k_1, k_2 is 0.

Introduction 0000	Example 00	Proof ○○○○○○●○
n dimensions		

- Let $T : P \to \Gamma$ be defined by $T(x) = \inf_{\prec} \{ y \in \Gamma \mid y \succeq x \}$ and $B : T \to \Gamma$ by $B(x) = \sup_{\prec} \{ y \in \Gamma \mid y \preceq x \}.$
- T(x) is the least element in Γ which is at least as big as x and B(x) is the greatest element in Γ which is at most as big as x.
- By fiber arguments, T⁻¹(y) and B⁻¹(y) have dimension < n for all but finitely many points of Γ, and we may restrict to some piece of Γ where k₁ = dim(T⁻¹(y)) and k₂ = dim(B⁻¹(y)) are constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers, $n = \dim((b, c)_{\prec}) \le 1 + k_1, 1 + k_2$.
- We want to show that at least one of k_1, k_2 is 0.

Bringing in pdim

- Consider any $a \in (b, c)_{\prec} \cap \Gamma$. If $k_1, k_2 \neq 0$, we can take $d \in T^{-1}(a)$ and $e \in B^{-1}(a)$ with $d, e \neq a$.
- Note that $(d, a)_{\prec} \subseteq T^{-1}(a)$, and $(a, e)_{\prec} \subseteq B^{-1}(a)$. Thus $\dim((d, e)_{\prec}) \leq \dim(T^{-1}(a) \cup B^{-1}(a)) \leq \max(k_1, k_2) < n$. So $\operatorname{pdim}(a) < n$, contradiction.
- Thus, one of k_1 or k_2 must be 0, so dim $(P) = n \le 1 + 0$.

Bringing in pdim

- Consider any a ∈ (b, c) ≺ ∩ Γ. If k₁, k₂ ≠ 0, we can take d ∈ T⁻¹(a) and e ∈ B⁻¹(a) with d, e ≠ a.
- Note that $(d, a)_{\prec} \subseteq T^{-1}(a)$, and $(a, e)_{\prec} \subseteq B^{-1}(a)$. Thus $\dim((d, e)_{\prec}) \leq \dim(T^{-1}(a) \cup B^{-1}(a)) \leq \max(k_1, k_2) < n$. So $\operatorname{pdim}(a) < n$, contradiction.
- Thus, one of k_1 or k_2 must be 0, so dim $(P) = n \le 1 + 0$.

Bringing in pdim

- Consider any a ∈ (b, c) ≺ ∩ Γ. If k₁, k₂ ≠ 0, we can take d ∈ T⁻¹(a) and e ∈ B⁻¹(a) with d, e ≠ a.
- Note that $(d, a)_{\prec} \subseteq T^{-1}(a)$, and $(a, e)_{\prec} \subseteq B^{-1}(a)$. Thus $\dim((d, e)_{\prec}) \leq \dim(T^{-1}(a) \cup B^{-1}(a)) \leq \max(k_1, k_2) < n$. So $\operatorname{pdim}(a) < n$, contradiction.
- Thus, one of k_1 or k_2 must be 0, so dim $(P) = n \le 1 + 0$.