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Definitions

An o-minimal structure M is a linearly ordered structure in
which every first-order definable subset of M is a finite union
of points and intervals. The reals as an ordered field and the
rationals as an ordered group are both examples.

We will only consider densely ordered o-minimal structures.

A structure (G , . . .) is interpretable in M if there is a definable
set X ⊆ Mk and definable equivalence relation E such that G
is isomorphic to X/E and all the structure on G is definable
on X/E in M. The structure Meq contains all interpretable
sets in M.

Many o-minimal structures have elimination of imaginaries:
every interpretable set is definably isomorphic to a definable
one. In fact, they often have definable choice.

This follows from cell decomposition in the presence of a
group structure. Each equivalence class can be taken to be a
union of cells, and the structure can uniformly pick a unique
element in each cell.

Local Properties

The assumption of group structure is not so strange, because
by the Trichotomy Theorem, every point in an o-minimal
structure is either “trivial,” lies in a definable local group, or
lies in a definable real closed field.

“Trivial” means that there are no definable monotonic binary
functions in a neighborhood. A “local group” can be thought
of as the restriction of a topological group to a neighborhood
around 0, so addition is not always defined, if it would go
outside the neighborhood.

However, it is certainly possible that a structure can have a
definable local group around every point, and yet not have a
definable global group, or even admit the structure of a global
group.

Groups

Besides global group structure and local groups, o-minimal
structures can also have general definable or interpretable
groups.

These groups live in some cartesian power of the structure,
and need not, a priori, have anything to do with any
underlying group in the structure.

Examples include the circle group S1 and general linear group
GLn(R) on the definable side, and PGLn(R) on the
interpretable side.

There has been much work about definable groups, most
prominently in the proof of Pillay’s Conjecture, that every
definable group, after a quotient by the connected component
G 00 is isomorphic to a Lie group of the appropriate dimension.

However, little was known about interpretable groups.
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Result

Theorem
Let G be an interpretable group in a dense o-minimal structure.
Then G is definably isomorphic to a definable group that is a
subset of a cartesian product of one-dimensional definable groups.

Note: the definable isomorphism may require more parameters
than those used to define G .

When M expands a group, the theorem is trivial. Thus, the
principle of the proof is to use the existence of the group G to
accomplish what the group on M would normally do.

When M does not expand a group, the conclusion was
unknown even for definable groups.

Strategy: Topology
Our strategy requires a number of approaches on different aspects
of o-minimality.

As with definable groups, we endow G with a group topology
with a definable basis. In this process, we essentially turn G
into a manifold. While the manifold does not have a finite
atlas, it does yield a finite number of “large” sets, through
which we can deduce many of the usual properties of
definable groups.
Using standard topological group decompositions, we can
separate into the definably simple and definably compact
cases for G .
When G is definably simple (non-abelian with no definable
nontrivial normal subgroup) and definably connected, we
repeat the proof of Peterzil-Pillay-Starchenko using our group
topology and manifold structure.
The techniques of [PPS] embed G into GL(n,R) for some
definable real closed field R. Since GL(n,R) is a definable
group, this finishes the theorem for definably simple groups.

Strategy: Getting One-Dimensional Sets

When G is definably compact, we use a strategy similar to
Edmundo’s in the case of solvable groups to obtain strong
definable choice for Meq-definable subsets of G .

Strong definable choice means that for any definable family
{Xt ⊆ G : t ∈ T} with T ⊆ Meq, there is a definable function
f : T → G such that f (t) ∈ Xt and f (t) = f (s) if Xt = Xs .

A general result: for interpretable X/E , we can take
X ⊆ I1 × · · · × Ik , with each interval Ij the image of X/E
under a definable map fj .

Applying this result to definably compact G and using strong
definable choice on the sets given by the preimages of the fj ’s,
we have one-dimensional subsets of G .

Strategy: Turning One-Dimensional Sets Into Groups

We prove a general result that any one-dimensional
equivalence relation can be eliminated – that is, if
dim(X/E ) = 1, then X/E is in definable bijection with a
one-dimensional definable set.

Thus, any one-dimensional subset of G is in definable
bijection with a one-dimensional subset of M.

We want these one-dimensional subsets to be embedded in
definable groups, so we can definably choose representatives
of each equivalence class in G .

We then prove that if f : I × J → M is a definable function,
monotonic in both coordinates, then either I or J can be
definably embedded in a definable one-dimensional group.

Applying to the group operation on Ij yields the desired result.



What to Expect

In this talk, I will:

show where the topology comes from;

give the proof that one-dimensional quotients can be
eliminated;

give some idea why if f : I × J → M is a definable function
monotonic in both coordinates, then either I or J can be
definably embedded in a definable one-dimensional group.

Topology

We can modify our underlying set X and equivalence relation
E so that after a partition, all equivalence classes have the
same homeomorphism type, and the base set U is open in its
ambient space.

We suppose that each equivalence class is open in the first d
coordinates. Then for each x ∈ π≤d(U) ⊆ Mn, the fiber of U
above x has a single representative in each E -class.

For u ∈ U, let U(u) be the fiber of U above π≤d(u).

Let u = 〈x ′, x ′′〉 be a generic element of U, and let V be a
definable basis of neighborhoods of x ′′, all contained in U(u).
Then the family B = {gV : g ∈ G} is a basis for a topology
(t-topology) making G into a topological group.

The t-topology makes G into a topological group because it
comes from the usual order topology, so there is a canonical
homeomorphism between a neighborhood V of x ′′ in U(u)
and a t-neighborhood of u.

We do not have a finite atlas (yet) on G with this topology.
However, what we have is not too bad:

Proposition

There are finitely many t-open definable sets W1, . . . ,Wk whose
union covers G . Each Wi is the (non-injective!) image of U0,
where U0 is a finite disjoint union of definable open subsets of
various M ri ’s.

This implies that every definable subset of G has finitely many
definably connected components, and thus that many properties of
definable groups in o-minimal structures still hold.
In particular, this is enough for the definably simple non-abelian
case, with [PPS]’s arguments.

One-dimensional interpretable sets

The proof for definably compact groups goes by first showing
that definably compact groups have strong definable choice.

This then allows us to definably pick one-dimensional
interpretable sets in the group G , into whose cartesian
product we can suppose that G is embedded.

Thus, if we can show that these one-dimensional interpretable
sets are actually definable and embeddable in one-dimensional
groups, we will be done.

Theorem
Let T ⊂ Meq have dimension 1. Then there exists a definable
injective map f : T → Mm for some m.

We consider {Xt : t ∈ T} a definable family, with T ⊂ Meq and
dim T = 1, and show that the desired map exists for this T , by
induction on the ambient space of the Xt ’s. Then we are done by
considering {[t] : t ∈ T}.



We perform o-minimal tricks to make all the Xt ’s cells in Mk

of the same dimension r . We go by induction on (k , r).

If r = k , then each Xt is uniquely determined by its
“boundary cells,” and we are done by induction. So we can
take r = k − 1.

There are two kinds of points in the Xt ’s – those that belong
to only finitely many Xt , and the others. We partition each Xt

into these two sets, X 0
t and X ′t .

The union of all X ′t has dimension less than k , by
straightforward dimension arguments, so it is done by
induction.

Further partitioning X 0
t , we can suppose that it is the graph

of a function ft on a cell Ct , with distinct X 0
t ’s disjoint.

By induction, we have the desired function for the family
{Ct : t ∈ T ′}, where T ′ is T modulo the equivalence relation
Cs = Ct . So we need to separate out Xt ’s projecting to the
same Ct .

For each Ct , if only finitely many X 0
t project onto Ct , then we

can take care of them.

If infinitely many X 0
t project onto Ct , then since dim T = 1,

there are only finitely many such Ct . For each one, we can fix
ā ∈ Ct , and define g(t) = ft(ā).

(This step fails in higher dimension, since we would have to
pick infinitely many such points.)

Group-intervals

We have now reduced the problem of definably compact G to
showing that one-dimensional definable subsets of G embed in
definable groups.

Every point of such a set is non-trivial (has a definable local
group) around it. But we need a local group that contains the
whole set, up to a finite partition.

Definition
Let I be a gp-short interval if after a finite partition, it can be
definably endowed with the structure of a group chunk, with 0
either an endpoint of I or in I .

Lemma
Let {It : t ∈ T} be a definable family of gp-short intervals, all with
the same left endpoint. Then

⋃
t It is a gp-short interval.

No demands are made on how the group chunks on I , It are
defined.

Proof:

Let (a, b) =
⋃

t It . We replace M by (a, b) with all the
induced structure on (a, b).

If we can find c ∈ (a, b) such that (c , b) is a group interval,
then we will be done, since some It contains (a, c).

If there is c ∈ (a, b) with a definable injection from (c , b) to
(d , e) for some a < d < e < b, again we are done.

Thus, we may assume that there are no such maps for any c,
and thus that our structure has no “poles,” treating b like ∞.

We pick a nonstandard c < b in an elementary extension N of
M. The interval (a, c) is gp-short, so there is a group
operation +G on it.



The fact that there are no poles means that the left convex
hull of M in N, M ′ = {x ∈ N : ∃d ∈ M(x < d)}, is an
elementary substructure of N.

The type of any element of N over M ′ is definable, since any
element of N \M ′ is infinitely large.

Then by the Marker-Steinhorn theorem, the type of any tuple
of elements of N over M ′ is definable.

Thus, the trace of any N-definable set in M ′ is M ′-definable.
It is straightforward that the trace of +G on M ′ gives a local
group on all of M ′, so M ′ itself defines a total local group.

Since this property is first-order, M = (a, b) also defines a
total local group.

Everything Interesting is gp-short

Theorem
Let I , J be intervals, and f : I × J → M a definable function strictly
monotone in both variables. Then at least one of I or J is gp-short.

Some steps on the way to the proof:

If f : I1 × . . .× Ik → J is definable with J gp-short and all Ii
gp-long, then f is constant at every generic point.

If f : I1 × I2 × J → M is definable with J gp-short but I1, I2
gp-long, then for generic a ∈ I1 × I2, the function f (a,−) is
determined (up to finite) by f (a, d) for any generic d .

If f : I1 × I2 × I3 → M is definable with I1, I2, I3 gp-long, then
we can partition I1, I2, I3 so that the functions f (a,−) and
f (b,−) on I3 are identical if they ever have the same value.

So families of functions parameterized by gp-long intervals are
one-dimensional, i.e., locally modular.

The standard machinery of local modularity gives a group
operation around x0 ∈ I by
x1 + x2 = x3 ⇐⇒ f −1x2 fx3 = f −1x0 fx1 .

This operation is valid whenever the intervals (x1, x0) and
(x2, x0) are gp-short.

But being gp-short is not a definable property, so the
operation “spills over” onto a longer interval, which is
necessarily gp-long, contradiction.

Applying the Theorem

By an argument, if h : I1 × . . .× Ik+1 → Mk is a definable
map injective in each coordinate separately, then at least one
of I1, . . . , Ik+1 is gp-short.

Let I be a one-dimensional set definable in G . Let fi : I i → G
be defined by fi (x1, . . . , xi ) = x1 · · · xi .
Take k ≥ 1 maximal such that fk is injective on B, some
cartesian product of gp-long intervals in I k .

We find a generic k + 1-tuple 〈a1, . . . , ak+1〉 ∈ I k+1 and a box
B ′ around it such that fk+1(B ′) is contained in fk(B) · ak+1.

This is enough, because then we are mapping a
k + 1-dimensional set injectively in each coordinate into a
k-dimensional set.


