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Definitions

An o-minimal structure M is a linearly ordered structure in
which every first-order definable subset of M is a finite union
of points and intervals (due to Pillay, Steinhorn).

We will only consider densely ordered o-minimal structures.

A structure (G , . . .) is interpretable in M if there is a definable
set X ⊆ Mk and definable equivalence relation E such that G
is isomorphic to X/E and all the structure on G is definable
on X/E in M.

Result

Theorem
Let G be an interpretable group in an arbitrary dense o-minimal
structure M. Then G is definably isomorphic to a definable group
that is a subset of a cartesian product of one-dimensional definable
groups.

Note: the definable isomorphism may require more parameters
than those used to define G .

When M expands a group, the theorem is trivial. Thus, the
principle of the proof is to use the existence of the group G to
accomplish what the group on M would normally do.

Strategy
Our strategy requires a number of approaches on different aspects
of o-minimality.

As with definable groups, we endow G with a group topology
with a definable basis.

When G is definably simple (non-abelian with no definable
nontrivial normal subgroup) and definably connected, we can
repeat the proof of Peterzil-Pillay-Starchenko using this group
topology.

The proof of [PPS] yields an embedding of G into GL(n,R)
for some definable real closed field R. Since GL(n,R) is a
definable group, this finishes the theorem.

When G is definably compact, we use a strategy similar to
Edmundo’s in the case of solvable groups to obtain strong
definable choice for Meq-definable subsets of G .

Strong definable choice means that for any definable family
{Xt ⊆ G : t ∈ T}, there is a definable function f : T → G
such that f (t) ∈ Xt and f (t) = f (s) if Xt = Xs .
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A general result: for interpretable X/E , we can take
X ⊆ I1 × · · · × Ik , with each interval Ij the image of X/E
under a definable map fj .

Applying this result to definably compact G and using strong
definable choice on the sets given by the preimages of the fj ’s,
we have one-dimensional subsets of G .

We prove a general result that any one-dimensional
equivalence relation can be eliminated – that is, if
dim(X/E ) = 1, then X/E is in definable bijection with a
one-dimensional definable set.

Thus, any one-dimensional subset of G is in definable
bijection with a one-dimensional subset of M.

We want these one-dimensional subsets to be embedded in
definable groups, so we can definably choose representatives
of each equivalence class in G .

We then prove that if f : I × J → M is a definable function,
monotonic in both coordinates, then either I or J can be
definably embedded in a definable one-dimensional group.

Applying to the group operation on Ij yields the desired result.

What to Expect

In this talk, I will:

define the topology;

sketch the proof that one-dimensional quotients can be
eliminated;

give some idea why if f : I × J → M is a definable function
monotonic in both coordinates, then either I or J can be
definably embedded in a definable one-dimensional group.

Topology

The definition of the topology depends on the following:

Lemma
Let X be a definable set and E a definable equivalence relation on
X . Then there are definable Y and E ′ such that X/E = Y /E ′ and
Y admits a partition into finitely many definable sets, U1, . . . ,Um,
respecting E ′, such that in each set, all equivalence classes have
dimension d and projection onto the first d coordinates is a
homeomorphism. Moreover, each Ui is an open subset of Mki .

Thus, from now on, we will assume that after a finite partition, all
equivalence classes have the same homeomorphism type, and the
base set X is open in its ambient space.

We suppose that each equivalence class is open in the first d
coordinates. Then for each x ∈ π≤d(U) ⊆ Mn, the fiber of U
above x has a single representative in each E -class.

For u ∈ U, let U(u) be the fiber of U above u.

Let u = 〈x ′, x ′′〉 be a generic element of U, and let V be a
definable basis of neighborhoods of x ′′, all contained in U(u).
Then the family B = {gV : g ∈ G} is a basis for a topology
(t-topology) making G into a topological group.

The t-topology makes G into a topological group because it
comes from the usual order topology, so there is a canonical
homeomorphism between a neighborhood V of x ′′ in U(u)
and a t-neighborhood of u.

Thus, definable maps from G to Md and Mk to G are
continuous at generic points, since we may actually consider
them to be coming from/going to U(g) for g generic in U.

By methods of Măŕıková, this shows that G is a topological
group with the t-topology.



We do not have a finite atlas (yet) on G with this topology.
However, what we have is not too bad:

Proposition

There are finitely many t-open definable sets W1, . . . ,Wk whose
union covers G . Each Wi is the (non-injective!) image of U0,
where U0 is a finite disjoint union of definable open subsets of
various M ri ’s.

This implies that every definable subset of G has finitely many
definably connected components, and thus that many properties of
definable groups in o-minimal structures still hold.
In particular, this is enough for the definably simple non-abelian
case, with [PPS]’s arguments.

One-dimensional interpretable sets

The proof for definably compact groups goes by first showing
that definably compact groups have strong definable choice.

This then allows us to definably pick one-dimensional
interpretable sets in the group G , into whose cartesian
product we can suppose that G is embedded.

Thus, if we can show that these one-dimensional interpretable
sets are actually definable and embeddable in one-dimensional
groups, we will be done.

Theorem
Let T ⊂ Meq have dimension 1. Then there exists a definable
injective map f : T → Mm for some m.

We consider {Xt : t ∈ T} a definable family, with T ⊂ Meq and
dim T = 1, and show that the desired map exists for this T , by
induction on the ambient space of the Xt ’s. Then we are done by
considering {[t] : t ∈ T}.

We perform o-minimal tricks to make all the Xt ’s cells in Mk

of the same dimension r .

If r = k , then each Xt is uniquely determined by its
“boundary cells,” and we are done by induction.

There are two kinds of points in the Xt ’s – those that belong
to only finitely many Xt , and the others. We partition each Xt

into these two sets, X 0
t and X ′t .

The union of all X ′t has dimension less than k , by
straightforward dimension arguments, so it is done by
induction.

Further partitioning X 0
t , we can suppose that it is the graph

of a function ft on a cell Ct , with distinct X 0
t ’s disjoint.

By induction, we have the desired function for the family
{Ct : t ∈ T ′}, where T ′ is T modulo the equivalence relation
Cs = Ct . So we need to separate out Xt ’s projecting to the
same Ct .

For each Ct , if only finitely many X 0
t project onto Ct , then we

can take care of them.

If infinitely many X 0
t project onto Ct , then since dim T = 1,

there are only finitely many such Ct . For each one, we can fix
ā ∈ Ct , and define g(t) = ft(ā).

(This step fails in higher dimension, since we would have to
pick infinitely many such points.)



Group-intervals

We have now reduced the problem of definably compact G to
showing that one-dimensional definable subsets of G embed in
definable groups.

Every point of such a set is non-trivial (has a definable group
chunk) around it. But we need a group chunk that contains
the whole set, up to a finite partition.

Definition
Let I be a gp-short interval if after a finite partition, it can be
definably endowed with the structure of a group chunk, with 0
either an endpoint of I or in I .

Lemma
Let {It : t ∈ T} be a definable family of gp-short intervals, all with
the same left endpoint. Then

⋃
t It is a gp-short interval.

No demands are made on how the group chunks on I , It are
defined.

Proof:

Let (a, b) =
⋃

t It . If we can find c ∈ (a, b) such that (c , b) is
a group interval, then we will be done, since some It contains
(a, c).

If there is c ∈ (a, b) with a definable injection from (c , b) to
(d , e) for some a < d < e < b, again we are done.

Thus, we may assume that there are no such maps for any c,
and thus that our structure has no “poles,” treating b like ∞.

This allows us to pick a nonstandard c < b, show that (a, c)
is gp-short, and then bring down this group operation to the
trace of (a, c) on M, which is just (a, b).

Everything Interesting is gp-short

Theorem
Let I , J be intervals, and f : I × J → M a definable function strictly
monotone in both variables. Then at least one of I or J is gp-short.

Some steps on the way to the proof:

If f : I1 × . . .× Ik → J is definable with J gp-short and all Ii
gp-long, then f is constant at every generic point.

If f : I1 × I2 × J → M is definable with J gp-short but I1, I2
gp-long, then for generic a ∈ I1 × I2, the function f (a,−) is
determined (up to finite) by f (a, d) for any generic d .

If f : I1 × I2 × I3 → M is definable with I1, I2, I3 gp-long, then
we can partition I1, I2, I3 so that the functions f (a,−) and
f (b,−) on I3 are identical if they ever have the same value.

So families of functions parameterized by gp-long intervals are
one-dimensional, i.e., locally modular.

The standard machinery of local modularity gives a group
operation around x0 ∈ I by
x1 + x2 = x3 ⇐⇒ f −1x2 fx3 = f −1x0 fx1 .

This operation is valid whenever the intervals (x1, x0) and
(x2, x0) are gp-short.

But being gp-short is not a definable property, so the
operation “spills over” onto a longer interval, which is
necessarily gp-long, contradiction.



Applying the Theorem

By an argument, if h : I1 × . . .× Ik+1 → Mk is a definable
map injective in each coordinate separately, then at least one
of I1, . . . , Ik+1 is gp-short.

Let I be a one-dimensional set definable in G . Let fi : I i → G
be defined by fi (x1, . . . , xi ) = x1 · · · xi .
Take k ≥ 1 maximal such that fk is injective on B, some
cartesian product of gp-long intervals in I k .

We will find a generic k + 1-tuple 〈a1, . . . , ak+1〉 ∈ I k+1 and a
box B ′ around it such that fk+1(B ′) is contained in
fk(B) · ak+1.

This is enough, because then we are mapping a
k + 1-dimensional set injectively in each coordinate into a
k-dimensional set.

Define the equivalence relation E ′ on I k+1 by
xE ′y ⇐⇒ fk+1(x) = fk+1(y).

Since fk+1 is not injective on any gp-long box, this implies
that [ā] is infinite.

Because fk � B is injective, the projection of [ā] on the
k + 1-coordinate is injective, and so the image of [ā] contains
a gp-long interval, J.

We can take J to be definable over parameters independent
from ā. Then we can find a gp-long box B ′ containing ā such
that every x ∈ B ′ has [x ] projecting in the k + 1-coordinate
onto J, and thus in particular containing ak+1.


