
Extending partial orders in tame ordered
structures

Janak Ramakrishnan
(joint with C. Steinhorn)

CMAF, University of Lisbon
http://janak.org/talks/euro.pdf

Model Theory in Wroc law 2012
19 June 2012

Question

J. Truss asked whether any definable partial order in an
o-minimal structure could be definably extended to a linear
order.

We will positively answer a generalization of this question, by
describing several classes of ordered structures that definably
extend their definable partial orders.

These structures can be thought of as possessing a
“definable” order extension principle – in these structures, the
“order extension principle” of ZFC holds definably. Formally:

Definition
Let M be a structure. Say that M has the order extension principle
(has OE) if, for any M-definable partial order (P,≺), there is an
M-definable linear order ≺′ that totally orders P and such that
x ≺ y ⇒ x ≺′ y .

Examples of structures with OE

In this talk, we will prove that the following structures have OE:

1 All well-ordered structures.

2 All (weakly) o-minimal structures (every definable
1-dimensional set is a finite union of points and convex sets).

3 All (weakly-)quasi-o-minimal structures.

Prior to our work, the only results in this direction were when
the partial order was 1-dimensional (just a subset of M).

MacPherson and Steinhorn did the case when M was
o-minimal.

Felgner and Truss did the case when M was well-ordered,
essentially by the same method as our proof.

The key easy step

Our work hinges on an easy observation: that any family of
sets induces a partial order on its parameter set.

Let V = {V (x) : x ∈ A} be any family of sets, parameterized
by A.

Definition
Let ≺V be the partial order on A given by the relation x ≺V y if
and only if V (x) ( V (y).

Definition
Let (P,≺) be a partial order. Let L(x) = {y ∈ P : y ≺ x} for
x ∈ P – the “lower cone” of x .

Let V = {L(x) : x ∈ P}. Then ≺V is a partial order on P.

If x ≺ y , then by transitivity and x ∈ L(y) \ L(x), we have
x ≺V y , so ≺V is a partial order on P extending ≺.

Thus, if we can linearly extend the partial order ≺V for any
definable family V, we can linearly extend any partial order.
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Well-ordered structures

Theorem
Let M be a well-ordered structure. Then M has OE.

Let A be the parameter set for V = {V (x) : x ∈ A}, a
definable family of sets in Mn for some n ≥ 0. We first
consider the case n = 1.

For x , y ∈ A, let B(x , y) = V (x)4V (y). Since M is
well-ordered, there is a least element of B(x , y). Then for
x , y ∈ A, let x ≺ y if t ∈ V (y) (so t /∈ V (x)).

If x and y are still unordered, then V (x) = V (y). Order x
and y lexicographically.

Dimension n

For t ∈ M and any set X ⊆ Mn, let Xt = {y : 〈t, y〉 ∈ X},
the fiber of X over t.

For higher dimensions, we use the fact that for any t ∈ M, we
can consider the family Vt = {V (x)t : x ∈ A}.
This induces a partial order ≺t on A.

The collection Vt is a family of (n − 1)-dimensional sets and
so, by induction, we may extend each ≺t to a linear order on
A, uniformly in t.

Instead of letting B(x , y) = V (x)4V (y), we set
B(x , y) = {t : V (x)t 6= V (y)t}. Then we let x ≺ y if x ≺t y
for t the least element of B(x , y).

The general case

The previous proof gives the principle for subsequent proofs: if
there is some consistent way to pick out a particular part of
B(x , y), for which each ≺t gives the same answer about x and y ,
then we can use that answer to order x and y .

Theorem (R., Steinhorn)

Let M be an ordered structure such that, for any definable
A,C ⊆ M, there is some initial segment of A either contained in or
disjoint from C. Then M has OE.

Proof.

As before, we restrict to the 1-dimensional case for simplicity.

The proof proceeds as in the well-ordered case until we have
B(x , y) = V (x)4V (y).

Consider the definable set {t : t ∈ V (y) \ V (x)}. By
hypothesis, this set either contains or is disjoint from an initial
segment of B(x , y).

If it contains an initial segment of B(x , y), then set x ≺ y .
Otherwise, let y ≺ x .

It is then routine to verify that this yields a nearly-total order,
which is completed lexicographically.



Consequences of Theorem

Theorem
If M is an ordered structure such that for any definable A,C ⊆ M,
C contains or is disjoint from an initial segment of A, then M has
OE.

The theorem immediately implies our results on well-ordered,
o-minimal, and weakly o-minimal structures.

Due to results of Onshuus, Steinhorn; R., any definable linear
order in an o-minimal structure (with EI) embeds definably in
a lexicographic order.

Thus any definable partial order in an o-minimal structure
(with EI) embeds in a reduct of a lexicographic order.

Note that while the hypothesis on M in the theorem is
first-order, the properties of being well-ordered or weakly
o-minimal are not first-order.

Thus, if some model of the theory of M is weakly o-minimal
or well-ordered, then M satisfies the requisite hypothesis.

Extending the proof

As referred to before, if there is some consistent way to pick
out a particular part of B(x , y), for which each ≺t gives the
same answer about x and y , then we can use that answer to
order x and y .

We thus describe a class of structures for which a more
intricate model-theoretic argument works.

Confusing property

Definition
Say that an ω-saturated ordered structure M has (‡) if for any
complete type p ∈ S1(∅) and any definable sets A,C ⊆ M, the set
p(M) ∩ A has an initial segment either disjoint from or contained
in C .

This is a natural generalization of the previous property we
looked at.

Instead of looking at the whole structure when we intersect
sets, we restrict to a ∅-definable type.

This avoids problems caused by things like ∅-definable
predicates.

Lemma
If M has (‡), then, given A and C , we may actually replace the
type p in the statement of (‡) by some formula ϕ ∈ p. Thus some
initial segment of ϕ(M) ∩ A is contained in or disjoint from C .
Moreover, ϕ is independent of the parameters used to define A,C .

The lemma comes from a straightforward use of compactness, and
allows us to replace types by formulas.

Theorem (R., Steinhorn)

Let M be an ω-saturated ordered structure with (‡). Then M has
OE.

The proof proceeds as before, but the definition of the order in
terms of B(x , y) is considerably more complicated, due to multiple
applications of compactness.



Structures with and without (‡)

This theorem most directly deals with quasi-o-minimal
structures: ordered structures in which every definable set is
(uniformly) a finite Boolean combination of points, intervals,
and ∅-definable sets.

We can also weaken “interval” to “convex set,” obtaining
weakly-quasi-o-minimal structures.

One might hope that (‡) held for all “reasonable” “tame”
ordered structures. However . . .

There is a dp-minimal (even VC-minimal) ordered structure
that does not have (‡).

A dp-minimal ordered structure without (‡)

Let M = 〈Q×Q, <,E ,R〉, where
1 < orders Q×Q lexicographically;
2 R is an equivalence relation such that R(x , y) holds iff x and y

lie in the same copy of Q.
3 E is an equivalence relation refining each R-equivalence class

into two dense equivalence classes.

It is not hard to see that this structure has quantifier
elimination and is therefore dp-minimal (and even
VC-minimal), and has only one type over ∅.
But for any a, the set R(a,M) is neither contained in nor
disjoint from the set E (a,M), so M does not have ‡.

Another kind of counterexample

While a wide variety of ordered structures have OE, there are
ordered structures without OE.

For instance, the Fräıssé limit of finite structures with an
unrelated partial order ≺ and linear order < is an ordered
structure with a definable partial order which cannot be
definably extended to a linear order.

Note, however, that this structure has the Independence
Property.

Thus, the question remains whether there is a totally ordered
NIP (or dp-minimal, or VC-minimal) structure without OE.


