- Our topic this week will be a concept called "*T*-convexity," defined by van den Dries and Lewenberg in 1995, in a paper called "*T*-convexity and tame extensions."
- *T*-convexity is supposed to generalize the idea of a convex subring of a real closed field.
- Let *M* be a non-archimedean real closed field. Let *V* be a convex subring.
- The ring V has some nice properties. It is a valuation ring.
- This means that each element of the field of fractions of V is either in V or its inverse is.
- Then the group $\Gamma = M^{\times}/V^{\times}$ is the value group, and V/\mathfrak{m} is the residue field, where \mathfrak{m} is the maximal ideal of V.
- val is the map from M^{\times} to Γ , and res the map from V to V/\mathfrak{m} .
- Moreover, the residue field k is still real-closed.
- The structure (M, V) has quantifier elimination in the language $(+, \cdot, 0, 1, <, V)$ (due to Cherlin and Dickmann).

Convexity in o-minimal real closed fields

van den Dries and Lewenberg looked for a corresponding notion to convexity in the more general area of o-minimal fields.

Given M an o-minimal field with theory T, if V is an arbitrary convex ring, then V is still a valuation ring, but the residue field k will only be a real closed field – it will not have any of the additional structure.

For this reason, they introduced the notion of "*T*-convexity":

Definition

Let *M* be an o-minimal field. A convex subring $V \subseteq M$ is *T*-convex if it is closed under all \emptyset -definable continuous total unary functions on *M*.

O-minimal real closed fields

O-minimality was first defined by Pillay and Steinhorn. An ordered structure M is o-minimal if any definable subset of M is a finite union of points and intervals.

O-minimality was intended to be analogous to "minimal" in the stable context. There are similarities, but many important differences. For example, "strongly o-minimal" is equivalent to "o-minimal."

A fundamental fact about o-minimality is the Monotonicity Theorem:

Monotonicity Theorem

Let *M* be any o-minimal structure, and $f : (a, b) \rightarrow M$ any *M*-definable function on the interval (a, b). Then there are $a = a_0 < a_1 < a_2 < \cdots < a_k = b$ such that on each subinterval (a_i, a_{i+1}) the function *f* is continuous and monotonic.

Our focus here is going to be o-minimal structures expanding fields, or "o-minimal fields." Note that any o-minimal field is real closed.

T-convexity

A convex subring V is *T*-convex if it is closed under all \emptyset -definable continuous total unary functions on M.

It turns out that V will also be closed under all *n*-ary \emptyset -definable continuous total functions on M.

If $R \prec M$ with $R \subseteq V$, then V will even be closed under all *n*-ary R-definable continuous total functions on M.

The residue field and elementary substructures

The operation res takes the T-convex ring V to the real closed field res(V).

If $R \subset M$ is a substructure of M as a real closed field, with $R \subset V$ as well, then the map res : $R \rightarrow res(V)$ is a ring homomorphism between fields, and so injective.

The map res will be surjective if and only if $V = R + \mathfrak{m}$.

Such a surjection then induces the structure of a model of T on the residue field res(V).

When is res surjective on R?

Theorem

If $R \prec M$ with $R \subset V$, then res is surjective on R if and only if R is maximal among elementary substructures of M with $R \subseteq V$. One direction is easy:

- If res is surjective, then for any x ∈ V, the field R contains some element x' ∈ x + m.
- If $S \prec M$ with $R \subsetneq S \subseteq V$, then let $a \in S \setminus R$.
- There is some $a \in R$ with $a a' \in \mathfrak{m}$, so $a a' \in S$.
- Thus $1/(a-a') \in S$, but $1/(a-a') \notin V$. $\Rightarrow \leftarrow$.

Theorem

If $R \prec M$ with $R \subset V$, then res is surjective on R if and only if R is maximal among elementary substructures of M with $R \subseteq V$.

We have done \Rightarrow . Time for \Leftarrow .

Lemma

If R is maximal among elementary substructures of M with $R \subseteq V$, then R is cofinal in V.

Proof.

- Suppose that R is not cofinal in V. Then there is some a ∈ V with a > R.
- Let t(a) be any element in $R\langle a \rangle$, with t an L_R -term.
- Fix $c \in R$ with t continuous on (c, ∞) .
- Since a > R, we know that a > c + 1. Define f by f(x) = t(c+1) for $x \le c+1$ and f(x) = t(x) for x > c+1.

Maximality of R implies surjectivity of res

- If res is not surjective on R, then there is some $a \in res(V)$ with $res^{-1}(a) \cap R = \emptyset$.
- We consider $R\langle a \rangle$. Let t(a) be any element in $R\langle a \rangle$, with t an L_R -term.
- We can suppose that t is a continuous function on an interval (c, d) with c, d ∈ R ∪ {±∞}.
- If $(c, d) = (-\infty, \infty)$, then t is continuous on M, so $t(a) \in V$.
- If $c > -\infty$, then since $res(c) \neq res(a)$, we have $1/|a-c| \in V$. Likewise, if $d < \infty$ then $1/|d-a| \in V$.
- Since R is cofinal in V, we can find $\epsilon < 1/|a c|, 1/|d a|$ with $\epsilon \in R^+$.
- Define f by $f(x) = t(c + \epsilon)$ for $x \le c + \epsilon$, f(x) = t(x) for $x \in (c + \epsilon, d \epsilon)$, and $f(x) = t(d \epsilon)$ for $x \ge d \epsilon$.

Maximal elementary substructures of M

Quantifier elimination for T_{convex}

- It is not too hard to see that if R_1 and R_2 are two such maximal elementary substructures of M contained in V, then there is an isomorphism between them:
- for any $a \in R_1$, there is a unique $a' \in R_2$ with $a a' \in \mathfrak{m}$.
- This isomorphism commutes with the res map from each R_i onto res(V).
- Thus, we have a canonical way to make res(V) into a model of T, and even to consider it as an elementary substructure of M.

The theory T_{convex} is just T, the theory of M, together with the unary predicate V and the (infinitely many) statements that V is T-convex.

Theorem

If T is universally axiomatizable and has quantifier elimination, then T_{convex} also has quantifier elimination. T_{convex} is complete. If T is model complete, so is T_{convex} .

The main result here is that T_{convex} has quantifier elimination.

\mathcal{T}_{convex} has quantifier elimination

- van den Dries is enamored with a variant of the "Robinson-Shoenfield" test for quantifier elimination, which has two conditions:
 - Each substructure (R, V) of a model of T_{convex} has a T_{convex} -closure (\tilde{R}, \tilde{V}) , i.e. $(R, V) \subseteq (\tilde{R}, \tilde{V})$ and (\tilde{R}, \tilde{V}) embeds over (R, V) into every model of T_{convex} extending (R, V);
- Satisfying (1) is not hard, since any substructure of a model of T_{convex} is a model of T together with a T-convex subring. If the subring is proper, we are done, and if not, we can adjoin an element larger than R to R, while keeping V fixed, yielding a model of T_{convex}.

T_{convex} has quantifier elimination

- The second condition for the Robinson-Shoenfield test:
 - ② If $(R, V) \subseteq (R_1, V_1)$ are models of T_{convex} with $R \neq R_1$, there is an $a \in R_1 \setminus R$ such that $(R\langle a \rangle, V_1 \cap R\langle a \rangle)$ can be embedded over (R, V) into some elementary extension of (R, V).
- This follows essentially from the fact that, given a *T*-convex subring *V* of *R* ≺ *S* and an element *a* ∈ *S* with |*V*| < *a* < |*R* \ *V*|, there are exactly two *T*-convex subrings *W* of *R*⟨*a*⟩ with (*R*, *V*) ⊆ (*R*⟨*a*⟩, *W*) one that contains *a* and one that does not.
- This ends the proof. An easy consequence is that $T_{\rm convex}$ is weakly o-minimal.
- Any T_{convex}-definable subset of M is a finite Boolean combination of T-definable sets and sets of the form {x : f(x) ∈ V} for T-definable functions f.

The value group

- We now construct a language L_{vg} that we will use in constructing a theory on Γ, the value group for the valued field M.
- Let Σ be the collection of all L_{convex} -formulas φ with the properties: $T_{\text{convex}} \vdash \forall \vec{y}(\varphi(\vec{y}) \rightarrow y_i \neq 0)$ for i = 1, ..., n, and $T_{\text{convex}} \vdash \forall \vec{x} \vec{y}((\varphi(\vec{x}) \land \bigwedge_{i < n} \text{val}(x_i) = \text{val}(y_i)) \rightarrow \varphi(\vec{y})).$
- For each $\varphi \in \Sigma$ we add an *n*-ary predicate U_{φ} to L_{vg} .
- The interpretation of U_φ is that Γ ⊨ U_φ(γ₁,..., γ_n) if and only if there are a₁,..., a_n ∈ M with (M, V) ⊨ φ(a₁,..., a_n) and val(a_i) = γ_i for i = 1,..., n.
- Γ_{vg} denotes Γ as an L_{vg} -structure.

$T_{\rm vg}$ is weakly o-minimal

This follows easily from the fact that T_{convex} is weakly o-minimal. But there is a stronger result:

Theorem

If T is power-bounded, T_{vg} is o-minimal. Moreover, up to an extension by definitions, T_{vg} is just the theory of nontrivial ordered vector spaces over K, the "field of exponents of T."

Showing that T_{vg} is o-minimal follows from a very elegant lemma:

Lemma

Let $f : V \to R$ be definable in (M, V). Then v(f(x)) is ultimately constant: for some $\gamma \in \Gamma \cup \{\infty\}$ and $a \in V$, we have $v(f(x)) = \gamma$ for all $x \in V$ with x > a.

All functions are ultimately constant

Lemma

Let $f : V \to R$ be definable in (M, V). Then v(f(x)) is ultimately constant: for some $\gamma \in \Gamma \cup \{\infty\}$ and $a \in V$, we have $v(f(x)) = \gamma$ for all $x \in V$ with x > a.

To prove this lemma, we will use a fact:

Fact

Let X and Y be linearly ordered sets such that Y has no largest element. Let $f : X \to Y$ be a non-decreasing function such that f(X) is cofinal in Y. Then cofinality(X) = cofinality(Y).

Proof.

Define an equivalence relation E on X by aEb if and only if f(a) = f(b). Let S be a set of representatives for this equivalence relation. Then cofinality(X) = cofinality(S) = cofinality(f(S)) = cofinality(Y).

All functions are ultimately constant: a nice model

Lemma

Let $f : V \to R$ be definable in (M, V). Then v(f(x)) is ultimately constant: for some $\gamma \in \Gamma \cup \{\infty\}$ and $a \in V$, we have $v(f(x)) = \gamma$ for all $x \in V$ with x > a.

- We will want to use a certain well-behaved model of T_{convex} .
- Given M a model of T, we can adjoin an "infinitely large" element t, giving us the model M⟨t⟩, whose elements can be thought of as the germs of M-definable functions near ∞.
- There is a proper *T*-convex subring Fin_M(M⟨t⟩) = {f ∈ M⟨t⟩ : |f| < a for some a ∈ M}.
- We will prove the lemma in the structure (M(t), Fin_M(M(t))), which has value group isomorphic to K, the field of exponents of M.

$T_{\rm vg}$ is o-minimal and all functions are piecewise-linear

Lemma

Let $f : V \to R$ be definable in (M, V). Then v(f(x)) is ultimately constant.

Proof.

- We are working in $(M\langle t \rangle, \operatorname{Fin}_M(M\langle t \rangle))$.
- It is not too hard to show that we may take f to be positive and strictly increasing on V, so v(f(x)) is decreasing on V.
- If the desired property does not hold, then the set
 Δ = {v(f(x)) : x ∈ V} ⊆ K has no smallest element, so by
 the previous fact, we know that
 cofinality(M) = cofinality(V) = downward cofinality(Δ).
- But if we replace *M* by an elementary extension *M'* with cofinality larger than |K|, we have a contradiction.

Power-boundedness and piecewise-linearity

- Any definable function ϕ in T_{vg} can be "lifted" to a definable function f in T_{convex} .
- This is by definable choice for T_{convex} − for each x ∈ V, we must choose some y with val(y) = φ(val(x)).
- By power-boundedness, there is some $a \in M \setminus \{0\}$ and some $\lambda \in K$ such that $\lim_{x\to\infty} f(x)/x^{\lambda} = a$.
- Hence $\phi(\gamma) = \lambda \cdot \gamma + \operatorname{val}(a)$ for all sufficiently small $\gamma \in \Gamma$.
- Mapping finite intervals to intervals near ∞, we can show that above and below every point α ∈ Γ is an interval on which φ is K-linear.
- We can then show that the set of points in Γ that do not have an interval around them on which ϕ is K-linear is finite.
- Finally, the intervals around $\alpha \in \Gamma$ can be "glued" together, except at this finite set of bad points.

- Using the lemma, we can show that T_{vg} is o-minimal, since given any definable set in (M, V), we can express it using functions, and then see that these functions must have infema in Γ .
- The fact that T_{vg} is essentially the theory of ordered vector spaces comes from the fact that all definable functions in T_{vg} are piecewise-linear.
- Then a result of Loveys and Peterzil implies the conclusion.
- Piecewise-linearity comes directly from power-boundedness and the exponential-power-bounded dichotomy in o-minimal theories.

Applications to preparation theorems

The fact that all definable functions in T_{vg} are piecewise-linear has a very nice consequence, in the form of a preparation theorem:

Theorem

Let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ be definable in a polynomially-bounded o-minimal structure on \mathbb{R} . Then there is a definable finite covering C of \mathbb{R}^{n+1} , and for each $S \in C$ there are exponents λ and functions $\theta, a : \mathbb{R}^n \to \mathbb{R}$ and $u : \mathbb{R}^{n+1} \to \mathbb{R}$, all definable, such that graph(θ) is disjoint from S and $f(x, y) = |y - \theta(x)|^{\lambda} a(x) u(x, y)$, with $|u(x, y)| \le 1/2$.

Tame extensions

- Fix $R \prec M$, maximal in V.
- Any element in *M* \ *R* is "infinitesimal" over *R* − either infinitesimally close to an element of *R*, or close to ±∞.
- The type over R of any element of $M \setminus R$ is thus definable.
- How about types of tuples of elements of $M \setminus R$?
- The Marker-Steinhorn theorem on definable types gives us the answer:

Theorem

Let $M \prec N$ be an elementary pair of o-minimal structures. If M is Dedekind complete in N, then N realizes only definable n-types over M for all n.

• A consequence of this theorem is the following:

Theorem

Let $M \prec N$ be an elementary pair of o-minimal structures, with MDedekind complete in N. If $A \subseteq N^n$ is any N-definable set, then $A \cap M^n$ is M-definable.

Stable embeddedness

Theorem

If $A \subseteq M^n$ is definable in (M, V), then $res(A) \subseteq res(V)^n$ is definable in the *T*-model res(V).

- To prove this, we will first show that A ∩ Rⁿ is definable in R for R a maximal elementary substructure of M contained in V.
- By quantifier elimination, A is a Boolean combination of *T*-definable sets and sets of the form {x : f(x) ∈ V} for *T*-definable functions f.
- The Marker-Steinhorn theorem already tells us that the intersection of a *T*-definable set with *Rⁿ* will be *R*-definable.
- Thus, it only remains to show that sets of the form $\{x : f(x) \in V\} \cap \mathbb{R}^n$ are \mathbb{R} -definable.

Definability of types gives tameness

Theorem

Let $M \prec N$ be an elementary pair of o-minimal structures, with MDedekind complete in N. If $A \subseteq N^n$ is any N-definable set, then $A \cap M^n$ is M-definable.

• This theorem has important consequences for the $\mathcal{T}_{\text{convex}}$ situation. Namely,

Theorem

If $A \subseteq M^n$ is definable in (M, V), then $res(S) \subseteq res(V)^n$ is definable in the *T*-model res(V).

 In other words, res(V) is stably embedded in (M, V), as is R for R any maximal elementary substructure of M contained in V.

Theorem

If $A \subseteq M^n$ is definable in (M, V), then $res(A) \subseteq res(V)^n$ is definable in the *T*-model res(V).

- We need to show that a set of the form {x : f(x) ∈ V} ∩ Rⁿ is R-definable, where f is a T-definable function.
- We have the Marker-Steinhorn theorem:

Theorem

Let $M \prec N$ be an elementary pair of o-minimal structures, with MDedekind complete in N. If $A \subseteq N^n$ is any N-definable set, then $A \cap M^n$ is M-definable.

- There is an L_R -formula $\phi(x, y)$ such that for any $a \in R^k$ and $b \in R$, we have $R \models \phi(a, b)$ exactly when |f(a)| < b.
- Thus, the formula ∃yφ(x, y) holds in R exactly when f(x) is bounded by some element of R, and thus lies in V.
- Using the isomorphism between *R* and res(*V*), we get our desired definition of res(*A*) in res(*V*).