@ Our topic this week will be a concept called “T-convexity,”
defined by van den Dries and Lewenberg in 1995, in a paper
called “T-convexity and tame extensions.”

@ T-convexity is supposed to generalize the idea of a convex
subring of a real closed field.

@ Let M be a non-archimedean real closed field. Let V be a
convex subring.

@ The ring V has some nice properties. It is a valuation ring.

@ This means that each element of the field of fractions of V is
either in V or its inverse is.

@ Then the group ' = M*/V* is the value group, and V /m is
the residue field, where m is the maximal ideal of V.

@ val is the map from M* to I', and res the map from V to
V/m.
@ Moreover, the residue field k is still real-closed.

@ The structure (M, V) has quantifier elimination in the
language (+,+,0,1, <, V) (due to Cherlin and Dickmann).

Convexity in o-minimal real closed fields

van den Dries and Lewenberg looked for a corresponding notion to
convexity in the more general area of o-minimal fields.

Given M an o-minimal field with theory T, if V is an arbitrary
convex ring, then V is still a valuation ring, but the residue field k
will only be a real closed field — it will not have any of the
additional structure.

For this reason, they introduced the notion of “T-convexity":

Definition

Let M be an o-minimal field. A convex subring V C M is
T-convex if it is closed under all (-definable continuous total unary
functions on M.

O-minimal real closed fields

O-minimality was first defined by Pillay and Steinhorn. An ordered
structure M is o-minimal if any definable subset of M is a finite
union of points and intervals.

O-minimality was intended to be analogous to “minimal” in the
stable context. There are similarities, but many important
differences. For example, “strongly o-minimal” is equivalent to
“o-minimal.”

A fundamental fact about o-minimality is the Monotonicity
Theorem:

Monotonicity Theorem

Let M be any o-minimal structure, and f : (a, b) — M any
M-definable function on the interval (a, b). Then there are
a=ag < ay < ay<---<ax = b such that on each subinterval
(a;, aj+1) the function f is continuous and monotonic.

Our focus here is going to be o-minimal structures expanding fields,
or “o-minimal fields.” Note that any o-minimal field is real closed.

T-convexity

A convex subring V' is T-convex if it is closed under all ()-definable
continuous total unary functions on M.

It turns out that V will also be closed under all n-ary ()-definable
continuous total functions on M.

If R < M with R C V, then V will even be closed under all n-ary
R-definable continuous total functions on M.



The residue field and elementary substructures

The operation res takes the T-convex ring V to the real closed
field res(V).

If R C M is a substructure of M as a real closed field, with R C V
as well, then the map res : R — res(V) is a ring homomorphism
between fields, and so injective.

The map res will be surjective if and only if V = R 4+ m.

Such a surjection then induces the structure of a model of T on
the residue field res( V).

Theorem
If R < M with R C V, then res is surjective on R if and only if R
is maximal among elementary substructures of M with R C V.

We have done =. Time for <.
Lemma

If R is maximal among elementary substructures of M with
R C V, then R is cofinal in V.

Proof.
@ Suppose that R is not cofinal in V. Then there is some a € V
with a > R.
o Let t(a) be any element in R(a), with t an Lg-term.
e Fix ¢ € R with t continuous on (¢, c0).
@ Since a > R, we know that a > ¢ + 1. Define f by
f(x)=t(c+1) for x < c+1and f(x) = t(x) for x > c+ 1.

[

When is res surjective on R?

Theorem
If R < M with R C V, then res is surjective on R if and only if R
is maximal among elementary substructures of M with R C V.

One direction is easy:

o If res is surjective, then for any x € V, the field R contains
some element x’ € x + m.

@ IfS<Mwith RCSC V,thenletae S\ R.
@ Thereissome ace Rwitha—a em,soa—a €8S.
@ Thus1/(a—3a)e S, butl/(a—2a)¢ V. =><.

Maximality of R implies surjectivity of res

o If res is not surjective on R, then there is some a € res(V)
with res71(a) N R = 0.

@ We consider R(a). Let t(a) be any element in R(a), with t an
L g-term.

@ We can suppose that t is a continuous function on an interval
(c,d) with ¢, d € RU {£o0}.

e If (c,d) = (—o0,0), then t is continuous on M, so t(a) € V.

@ If ¢ > —oo, then since res(c) # res(a), we have
1/|a —c| € V. Likewise, if d < oo then 1/|d — a|] € V.

@ Since R is cofinal in V/, we can find e < 1/|a —c|,1/|d — a|
with e € R™.

@ Define f by f(x) = t(c+¢€) for x < c+¢, f(x) = t(x) for
x€(c+e,d—e€), and f(x) =t(d —¢€) for x > d —e.



Maximal elementary substructures of M Quantifier elimination for T.onvex

@ It is not too hard to see that if R and R, are two such
maximal elementary substructures of M contained in V/, then
there is an isomorphism between them:

The theory Tconvex is just T, the theory of M, together with the
unary predicate V and the (infinitely many) statements that V is
T-convex.

e for any a € Ry, there is a unique a’ € R, with a — a’ € m.
yaec g I uniqu € Ko wi S Theorem

If T is universally axiomatizable and has quantifier elimination,
then Tconvex also has quantifier elimination. Tcopvex IS complete. If
T is model complete, so is Tconvex-

@ This isomorphism commutes with the res map from each R;
onto res(V).

@ Thus, we have a canonical way to make res(V) into a model

of T, and even to consider it as an elementary substructure of
M.

The main result here is that Tconvex has quantifier elimination.

T convex has quantifier elimination T convex has quantifier elimination

@ The second condition for the Robinson-Shoenfield test:

@ van den Dries is enamored with a variant of the Q If (R,V) C (Ry, V4) are models of Tconvex With R # Ry, there

“Robinson-Shoenfield” test for quantifier elimination, which
has two conditions:

@ Each substructure (NR, V) of a model of Teonvex has a_
Teonvex-Closure (R, V), i.e. (R,V) C (R, V) and (R, V)
embeds over (R, V) into every model of Tconvex extending
(R, V);

e Satisfying (1) is not hard, since any substructure of a model

of Tconvex is @ model of T together with a T-convex subring.

If the subring is proper, we are done, and if not, we can adjoin

an element larger than R to R, while keeping V fixed, yielding

a model of Teonvex-

is an a € Ry \ R such that (R(a), V1 N R(a)) can be embedded
over (R, V) into some elementary extension of (R, V).
This follows essentially from the fact that, given a T-convex
subring V of R < S and an element a € S with
|V| < a<|R\ V|, there are exactly two T-convex subrings
W of R(a) with (R, V) C (R(a), W) — one that contains a
and one that does not.
This ends the proof. An easy consequence is that Tconvex IS
weakly o-minimal.

Any Tconvex-definable subset of M is a finite Boolean
combination of T-definable sets and sets of the form
{x: f(x) € V} for T-definable functions f.



The value group

@ We now construct a language L,g that we will use in
constructing a theory on I', the value group for the valued
field M.

@ Let ¥ be the collection of all Leonvex-formulas ¢ with the
properties: Teonvex = VY (p(¥) — yi #0) for i =1,...,n, and
Teonvex = Xy ((¢(X) A /\ign val(x;) = val(yi)) = ¢(¥)).

@ For each ¢ € ¥ we add an n-ary predicate U, to Lyg.

@ The interpretation of U, is that ' = Uy(71, ... ,7a) if and
only if there are a1, ...,a, € M with (M, V) = ¢(a1,...,an)
and val(a;) =i fori=1,...,n.

@ [z denotes I as an Lg-structure.

All functions are ultimately constant

Lemma

Let f : V — R be definable in (M, V). Then v(f(x)) is ultimately
constant: for some v € ' U{oo} and a € V, we have v(f(x)) =~
for all x € V with x > a.

To prove this lemma, we will use a fact:

Fact
Let X and Y be linearly ordered sets such that Y has no largest

element. Let f : X — Y be a non-decreasing function such that
f(X) is cofinal in Y. Then cofinality(X) = cofinality(Y).

Proof.

Define an equivalence relation E on X by aEb if and only if

f(a) = f(b). Let S be a set of representatives for this equivalence
relation. Then cofinality(X) = cofinality(S) = cofinality(f(S)) =
cofinality(Y). O

T,g is weakly o-minimal

This follows easily from the fact that Teonvex is weakly o-minimal.
But there is a stronger result:

Theorem

If T is power-bounded, T4 is o-minimal. Moreover, up to an
extension by definitions, T4 is just the theory of nontrivial ordered
vector spaces over K, the “field of exponents of T.”

Showing that T4 is o-minimal follows from a very elegant lemma:
Lemma
Let f : V — R be definable in (M, V). Then v(f(x)) is ultimately

constant: for some vy € I U {oo} and a € V, we have v(f(x)) =1~
for all x € V with x > a.

All functions are ultimately constant: a nice model

Lemma

Let f : V — R be definable in (M, V). Then v(f(x)) is ultimately
constant: for some vy € I U {oo} and a € V, we have v(f(x)) =1~
for all x € V with x > a.

o We will want to use a certain well-behaved model of Teonvex.

@ Given M a model of T, we can adjoin an “infinitely large”
element t, giving us the model M(t), whose elements can be
thought of as the germs of M-definable functions near co.

@ There is a proper T-convex subring
Finy (M(t)) = {f € M(t) : |f| < a for some a € M}.

@ We will prove the lemma in the structure
(M(t), Finps(M(t))), which has value group isomorphic to K,
the field of exponents of M.



All functions are ultimately constant: proof

Lemma
Let f : V — R be definable in (M, V). Then v(f(x)) is ultimately
constant.

Proof.

e We are working in (M(t), Finpy(M(t))).
@ It is not too hard to show that we may take f to be positive
and strictly increasing on V/, so v(f(x)) is decreasing on V.

@ If the desired property does not hold, then the set
A = {v(f(x)) : x € V} C K has no smallest element, so by
the previous fact, we know that
cofinality(M) = cofinality(V) = downward cofinality(A).

e But if we replace M by an elementary extension M’ with
cofinality larger than |K|, we have a contradiction.

Power-boundedness and piecewise-linearity

@ Any definable function ¢ in T,z can be “lifted” to a definable
function f in Teonvex.

This is by definable choice for Teonyex — for each x € V, we
must choose some y with val(y) = ¢(val(x)).

By power-boundedness, there is some a € M\ {0} and some
A € K such that limy_,o f(x)/x* = a.

Hence ¢() = A - v + val(a) for all sufficiently small v € T.

Mapping finite intervals to intervals near co, we can show that
above and below every point a € I is an interval on which ¢
is K-linear.

We can then show that the set of points in [ that do not have
an interval around them on which ¢ is K-linear is finite.

Finally, the intervals around o« € I can be “glued” together,
except at this finite set of bad points.

T,s is o-minimal and all functions are piecewise-linear

@ Using the lemma, we can show that T4 is o-minimal, since
given any definable set in (M, V), we can express it using
functions, and then see that these functions must have infema
inT.

@ The fact that T4 is essentially the theory of ordered vector
spaces comes from the fact that all definable functions in T,
are piecewise-linear.

@ Then a result of Loveys and Peterzil implies the conclusion.

@ Piecewise-linearity comes directly from power-boundedness
and the exponential-power-bounded dichotomy in o-minimal
theories.

Applications to preparation theorems

The fact that all definable functions in T, are piecewise-linear has
a very nice consequence, in the form of a preparation theorem:

Theorem

Let f : R"™! — R be definable in a polynomially-bounded
o-minimal structure on R. Then there is a definable finite covering
C of R"tY, and for each S € C there are exponents X\ and functions
0,a:R" — R and u: R — R, all definable, such that graph(f)
is disjoint from S and f(x,y) = |y — 0(x)| a(x)u(x, y), with
lu(x,y)[ <1/2.



Tame extensions

@ Fix R < M, maximal in V.

@ Any element in M\ R is “infinitesimal” over R — either
infinitesimally close to an element of R, or close to 4oc0.

@ The type over R of any element of M \ R is thus definable.

@ How about types of tuples of elements of M \ R?

@ The Marker-Steinhorn theorem on definable types gives us the
answer:

Theorem

Let M < N be an elementary pair of o-minimal structures. If M is
Dedekind complete in N, then N realizes only definable n-types
over M for all n.

@ A consequence of this theorem is the following:

Theorem

Let M < N be an elementary pair of o-minimal structures, with M
Dedekind complete in N. If A C N" is any N-definable set, then
AN M" js M-definable.

Stable embeddedness

Theorem
If AC M" is definable in (M, V'), then res(A) C res(V)" is
definable in the T-model res(V).

@ To prove this, we will first show that AN R" is definable in R
for R a maximal elementary substructure of M contained in V.

@ By quantifier elimination, A is a Boolean combination of
T-definable sets and sets of the form {x : f(x) € V} for
T-definable functions f.

@ The Marker-Steinhorn theorem already tells us that the
intersection of a T-definable set with R" will be R-definable.

@ Thus, it only remains to show that sets of the form
{x:f(x) € V} N R" are R-definable.

Definability of types gives tameness

Theorem

Let M < N be an elementary pair of o-minimal structures, with M
Dedekind complete in N. If A C N" is any N-definable set, then
AN M" js M-definable.

@ This theorem has important consequences for the Tconvex
situation. Namely,

Theorem
If AC M" is definable in (M, V), then res(S) C res(V)" is
definable in the T-model res(V).

@ In other words, res(V) is stably embedded in (M, V), asis R

for R any maximal elementary substructure of M contained in
V.

Theorem
If AC M" is definable in (M, V'), then res(A) C res(V)" is
definable in the T-model res(V).

@ We need to show that a set of the form {x: f(x) € V} N R"
is R-definable, where f is a T-definable function.

@ We have the Marker-Steinhorn theorem:

Theorem

Let M < N be an elementary pair of o-minimal structures, with M
Dedekind complete in N. If A C N" is any N-definable set, then
AN M" s M-definable.

@ There is an Lg-formula ¢(x, y) such that for any a € R and
b € R, we have R |= ¢(a, b) exactly when |f(a)| < b.

@ Thus, the formula Jy¢(x, y) holds in R exactly when f(x) is
bounded by some element of R, and thus lies in V.

@ Using the isomorphism between R and res(V/), we get our
desired definition of res(A) in res(V).



