- Our topic this week will be a concept called " T-convexity," defined by van den Dries and Lewenberg in 1995, in a paper called " T-convexity and tame extensions."
- T-convexity is supposed to generalize the idea of a convex subring of a real closed field.
- Let M be a non-archimedean real closed field. Let V be a convex subring.
- The ring V has some nice properties. It is a valuation ring.
- This means that each element of the field of fractions of V is either in V or its inverse is.
- Then the group $\Gamma=M^{\times} / V^{\times}$is the value group, and V / \mathfrak{m} is the residue field, where \mathfrak{m} is the maximal ideal of V.
- val is the map from M^{\times}to Γ, and res the map from V to V / m.
- Moreover, the residue field k is still real-closed.
- The structure (M, V) has quantifier elimination in the language ($+, \cdot, 0,1,<, V$) (due to Cherlin and Dickmann).

Convexity in o-minimal real closed fields

van den Dries and Lewenberg looked for a corresponding notion to convexity in the more general area of o-minimal fields. Given M an o-minimal field with theory T, if V is an arbitrary convex ring, then V is still a valuation ring, but the residue field k will only be a real closed field - it will not have any of the additional structure.
For this reason, they introduced the notion of " T-convexity":

Definition

Let M be an o-minimal field. A convex subring $V \subseteq M$ is
T-convex if it is closed under all \emptyset-definable continuous total unary functions on M.

O-minimal real closed fields

O-minimality was first defined by Pillay and Steinhorn. An ordered structure M is o-minimal if any definable subset of M is a finite union of points and intervals.
O-minimality was intended to be analogous to "minimal" in the stable context. There are similarities, but many important differences. For example, "strongly o-minimal" is equivalent to "o-minimal."
A fundamental fact about o-minimality is the Monotonicity Theorem:

Monotonicity Theorem

Let M be any o-minimal structure, and $f:(a, b) \rightarrow M$ any M-definable function on the interval (a, b). Then there are $a=a_{0}<a_{1}<a_{2}<\cdots<a_{k}=b$ such that on each subinterval (a_{i}, a_{i+1}) the function f is continuous and monotonic.
Our focus here is going to be o-minimal structures expanding fields, or "o-minimal fields." Note that any o-minimal field is real closed.

T-convexity

A convex subring V is T-convex if it is closed under all \emptyset-definable continuous total unary functions on M.
It turns out that V will also be closed under all n-ary \emptyset-definable continuous total functions on M.
If $R \prec M$ with $R \subseteq V$, then V will even be closed under all n-ary R-definable continuous total functions on M.

The residue field and elementary substructures

The operation res takes the T-convex ring V to the real closed field $\operatorname{res}(V)$.
If $R \subset M$ is a substructure of M as a real closed field, with $R \subset V$ as well, then the map res : $R \rightarrow \operatorname{res}(V)$ is a ring homomorphism between fields, and so injective.
The map res will be surjective if and only if $V=R+\mathfrak{m}$.
Such a surjection then induces the structure of a model of T on the residue field res (V).

Theorem
If $R \prec M$ with $R \subset V$, then res is surjective on R if and only if R is maximal among elementary substructures of M with $R \subseteq V$.
We have done \Rightarrow. Time for \Leftarrow
Lemma
If R is maximal among elementary substructures of M with $R \subseteq V$, then R is cofinal in V.

Proof.

- Suppose that R is not cofinal in V. Then there is some $a \in V$ with $a>R$.
- Let $t(a)$ be any element in $R\langle a\rangle$, with t an L_{R}-term.
- Fix $c \in R$ with t continuous on (c, ∞)
- Since $a>R$, we know that $a>c+1$. Define f by $f(x)=t(c+1)$ for $x \leq c+1$ and $f(x)=t(x)$ for $x>c+1$.

Theorem

If $R \prec M$ with $R \subset V$, then res is surjective on R if and only if R is maximal among elementary substructures of M with $R \subseteq V$.
One direction is easy:

- If res is surjective, then for any $x \in V$, the field R contains some element $x^{\prime} \in x+\mathfrak{m}$.
- If $S \prec M$ with $R \subsetneq S \subseteq V$, then let $a \in S \backslash R$.
- There is some $a \in R$ with $a-a^{\prime} \in \mathfrak{m}$, so $a-a^{\prime} \in S$.
- Thus $1 /\left(a-a^{\prime}\right) \in S$, but $1 /\left(a-a^{\prime}\right) \notin V . \Rightarrow \Leftarrow$.

Maximality of R implies surjectivity of res

- If res is not surjective on R, then there is some $a \in \operatorname{res}(V)$ with res $^{-1}(a) \cap R=\emptyset$.
- We consider $R\langle a\rangle$. Let $t(a)$ be any element in $R\langle a\rangle$, with t an L_{R}-term
- We can suppose that t is a continuous function on an interval (c, d) with $c, d \in R \cup\{ \pm \infty\}$.
- If $(c, d)=(-\infty, \infty)$, then t is continuous on M, so $t(a) \in V$.
- If $c>-\infty$, then since $\operatorname{res}(c) \neq \operatorname{res}(a)$, we have $1 /|a-c| \in V$. Likewise, if $d<\infty$ then $1 /|d-a| \in V$.
- Since R is cofinal in V, we can find $\epsilon<1 /|a-c|, 1 /|d-a|$ with $\epsilon \in R^{+}$.
- Define f by $f(x)=t(c+\epsilon)$ for $x \leq c+\epsilon, f(x)=t(x)$ for $x \in(c+\epsilon, d-\epsilon)$, and $f(x)=t(d-\epsilon)$ for $x \geq d-\epsilon$.

Maximal elementary substructures of M

Quantifier elimination for $T_{\text {convex }}$

- It is not too hard to see that if R_{1} and R_{2} are two such maximal elementary substructures of M contained in V, then there is an isomorphism between them:
- for any $a \in R_{1}$, there is a unique $a^{\prime} \in R_{2}$ with $a-a^{\prime} \in \mathfrak{m}$.
- This isomorphism commutes with the res map from each R_{i} onto res (V).
- Thus, we have a canonical way to make res (V) into a model of T, and even to consider it as an elementary substructure of M.

$T_{\text {convex }}$ has quantifier elimination

- van den Dries is enamored with a variant of the
"Robinson-Shoenfield" test for quantifier elimination, which has two conditions:
(1) Each substructure (R, V) of a model of $T_{\text {convex }}$ has a $T_{\text {convex-closure }}(\tilde{R}, \tilde{V})$, i.e. $(R, V) \subseteq(\tilde{R}, \tilde{V})$ and (\tilde{R}, \tilde{V}) embeds over (R, V) into every model of $T_{\text {convex }}$ extending (R, V);
- Satisfying (1) is not hard, since any substructure of a model of $T_{\text {convex }}$ is a model of T together with a T-convex subring. If the subring is proper, we are done, and if not, we can adjoin an element larger than R to R, while keeping V fixed, yielding a model of $T_{\text {convex. }}$.

The theory $T_{\text {convex }}$ is just T, the theory of M, together with the unary predicate V and the (infinitely many) statements that V is T-convex.

Theorem
If T is universally axiomatizable and has quantifier elimination, then $T_{\text {convex }}$ also has quantifier elimination. $T_{\text {convex }}$ is complete. If T is model complete, so is $T_{\text {convex. }}$
The main result here is that $T_{\text {convex }}$ has quantifier elimination.

$T_{\text {convex }}$ has quantifier elimination

- The second condition for the Robinson-Shoenfield test:
(2) If $(R, V) \subseteq\left(R_{1}, V_{1}\right)$ are models of $T_{\text {convex }}$ with $R \neq R_{1}$, there is an $a \in R_{1} \backslash R$ such that $\left(R\langle a\rangle, V_{1} \cap R\langle a\rangle\right)$ can be embedded over (R, V) into some elementary extension of (R, V).
- This follows essentially from the fact that, given a T-convex subring V of $R \prec S$ and an element $a \in S$ with $|V|<a<|R \backslash V|$, there are exactly two T-convex subrings W of $R\langle a\rangle$ with $(R, V) \subseteq(R\langle a\rangle, W)$ - one that contains a and one that does not.
- This ends the proof. An easy consequence is that $T_{\text {convex }}$ is weakly o-minimal.
- Any $T_{\text {convex-definable subset }}$ of M is a finite Boolean combination of T-definable sets and sets of the form $\{x: f(x) \in V\}$ for T-definable functions f.

The value group

- We now construct a language $L_{\text {vg }}$ that we will use in constructing a theory on Γ, the value group for the valued field M.
- Let Σ be the collection of all $L_{\text {convex }}$-formulas φ with the properties: $T_{\text {convex }} \vdash \forall \vec{y}\left(\varphi(\vec{y}) \rightarrow y_{i} \neq 0\right)$ for $i=1, \ldots, n$, and $T_{\text {convex }} \vdash \forall \vec{x} \vec{y}\left(\left(\varphi(\vec{x}) \wedge \bigwedge_{i \leq n} \operatorname{val}\left(x_{i}\right)=\operatorname{val}\left(y_{i}\right)\right) \rightarrow \varphi(\vec{y})\right)$.
- For each $\varphi \in \Sigma$ we add an n-ary predicate U_{φ} to L_{vg}.
- The interpretation of U_{φ} is that $\Gamma \vDash U_{\varphi}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ if and only if there are $a_{1}, \ldots, a_{n} \in M$ with $(M, V) \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ and $\operatorname{val}\left(a_{i}\right)=\gamma_{i}$ for $i=1, \ldots, n$.
- Γ_{vg} denotes Γ as an L_{vg}-structure.

All functions are ultimately constant

Lemma

Let $f: V \rightarrow R$ be definable in (M, V). Then $v(f(x))$ is ultimately constant: for some $\gamma \in \Gamma \cup\{\infty\}$ and $a \in V$, we have $v(f(x))=\gamma$ for all $x \in V$ with $x>$ a.
To prove this lemma, we will use a fact:
Fact
Let X and Y be linearly ordered sets such that Y has no largest element. Let $f: X \rightarrow Y$ be a non-decreasing function such that $f(X)$ is cofinal in Y. Then cofinality $(X)=\operatorname{cofinality}(Y)$.

Proof.
Define an equivalence relation E on X by $a E b$ if and only if $f(a)=f(b)$. Let S be a set of representatives for this equivalence relation. Then $\operatorname{cofinality}(X)=\operatorname{cofinality}(S)=\operatorname{cofinality}(f(S))=$ cofinality (Y).

This follows easily from the fact that $T_{\text {convex }}$ is weakly o-minimal. But there is a stronger result:
Theorem
If T is power-bounded, $T_{v g}$ is o-minimal. Moreover, up to an extension by definitions, $T_{v g}$ is just the theory of nontrivial ordered vector spaces over K, the "field of exponents of T."
Showing that T_{vg} is o-minimal follows from a very elegant lemma:
Lemma
Let $f: V \rightarrow R$ be definable in (M, V). Then $v(f(x))$ is ultimately constant: for some $\gamma \in \Gamma \cup\{\infty\}$ and $a \in V$, we have $v(f(x))=\gamma$ for all $x \in V$ with $x>$ a.

All functions are ultimately constant: a nice model

Lemma

Let $f: V \rightarrow R$ be definable in (M, V). Then $v(f(x))$ is ultimately constant: for some $\gamma \in \Gamma \cup\{\infty\}$ and $a \in V$, we have $v(f(x))=\gamma$ for all $x \in V$ with $x>a$.

- We will want to use a certain well-behaved model of $T_{\text {convex }}$.
- Given M a model of T, we can adjoin an "infinitely large" element t, giving us the model $M\langle t\rangle$, whose elements can be thought of as the germs of M-definable functions near ∞.
- There is a proper T-convex subring $\operatorname{Fin}_{M}(M\langle t\rangle)=\{f \in M\langle t\rangle:|f|<a$ for some $a \in M\}$.
- We will prove the lemma in the structure $\left(M\langle t\rangle, \operatorname{Fin}_{M}(M\langle t\rangle)\right)$, which has value group isomorphic to K, the field of exponents of M.

All functions are ultimately constant: proof

Lemma

Let $f: V \rightarrow R$ be definable in (M, V). Then $v(f(x))$ is ultimately constant.

Proof.

- We are working in $\left(M\langle t\rangle, \operatorname{Fin}_{M}(M\langle t\rangle)\right)$.
- It is not too hard to show that we may take f to be positive and strictly increasing on V, so $v(f(x))$ is decreasing on V.
- If the desired property does not hold, then the set $\Delta=\{v(f(x)): x \in V\} \subseteq K$ has no smallest element, so by the previous fact, we know that $\operatorname{cofinality}(M)=\operatorname{cofinality}(V)=\operatorname{downward} \operatorname{cofinality}(\Delta)$.
- But if we replace M by an elementary extension M^{\prime} with cofinality larger than $|K|$, we have a contradiction.

Power-boundedness and piecewise-linearity

- Any definable function ϕ in T_{vg} can be "lifted" to a definable function f in $T_{\text {convex }}$.
- This is by definable choice for $T_{\text {convex }}$ - for each $x \in V$, we must choose some y with $\operatorname{val}(y)=\phi(\operatorname{val}(x))$.
- By power-boundedness, there is some $a \in M \backslash\{0\}$ and some $\lambda \in K$ such that $\lim _{x \rightarrow \infty} f(x) / x^{\lambda}=a$.
- Hence $\phi(\gamma)=\lambda \cdot \gamma+\operatorname{val}(a)$ for all sufficiently small $\gamma \in \Gamma$.
- Mapping finite intervals to intervals near ∞, we can show that above and below every point $\alpha \in \Gamma$ is an interval on which ϕ is K-linear.
- We can then show that the set of points in 「 that do not have an interval around them on which ϕ is K-linear is finite.
- Finally, the intervals around $\alpha \in \Gamma$ can be "glued" together, except at this finite set of bad points.
- Using the lemma, we can show that T_{vg} is o-minimal, since given any definable set in (M, V), we can express it using functions, and then see that these functions must have infema in Γ.
- The fact that T_{vg} is essentially the theory of ordered vector spaces comes from the fact that all definable functions in T_{vg} are piecewise-linear.
- Then a result of Loveys and Peterzil implies the conclusion.
- Piecewise-linearity comes directly from power-boundedness and the exponential-power-bounded dichotomy in o-minimal theories.

Applications to preparation theorems

The fact that all definable functions in T_{vg} are piecewise-linear has a very nice consequence, in the form of a preparation theorem:
Theorem
Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be definable in a polynomially-bounded o-minimal structure on \mathbb{R}. Then there is a definable finite covering \mathcal{C} of \mathbb{R}^{n+1}, and for each $S \in \mathcal{C}$ there are exponents λ and functions $\theta, a: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $u: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, all definable, such that $\operatorname{graph}(\theta)$ is disjoint from S and $f(x, y)=|y-\theta(x)|^{\lambda} a(x) u(x, y)$, with $|u(x, y)| \leq 1 / 2$.

Tame extensions

- Fix $R \prec M$, maximal in V.
- Any element in $M \backslash R$ is "infinitesimal" over R - either infinitesimally close to an element of R, or close to $\pm \infty$.
- The type over R of any element of $M \backslash R$ is thus definable.
- How about types of tuples of elements of $M \backslash R$?
- The Marker-Steinhorn theorem on definable types gives us the answer:

Theorem
Let $M \prec N$ be an elementary pair of o-minimal structures. If M is Dedekind complete in N, then N realizes only definable n-types over M for all n.

- A consequence of this theorem is the following:

Theorem
Let $M \prec N$ be an elementary pair of o-minimal structures, with M Dedekind complete in N. If $A \subseteq N^{n}$ is any N-definable set, then $A \cap M^{n}$ is M-definable.

Stable embeddedness

Theorem
If $A \subseteq M^{n}$ is definable in (M, V), then $\operatorname{res}(A) \subseteq \operatorname{res}(V)^{n}$ is definable in the T-model res (V).

- To prove this, we will first show that $A \cap R^{n}$ is definable in R for R a maximal elementary substructure of M contained in V.
- By quantifier elimination, A is a Boolean combination of T-definable sets and sets of the form $\{x: f(x) \in V\}$ for T-definable functions f.
- The Marker-Steinhorn theorem already tells us that the intersection of a T-definable set with R^{n} will be R-definable.
- Thus, it only remains to show that sets of the form $\{x: f(x) \in V\} \cap R^{n}$ are R-definable.

Theorem

Let $M \prec N$ be an elementary pair of o-minimal structures, with M Dedekind complete in N. If $A \subseteq N^{n}$ is any N-definable set, then $A \cap M^{n}$ is M-definable.

- This theorem has important consequences for the $T_{\text {convex }}$ situation. Namely,
Theorem
If $A \subseteq M^{n}$ is definable in (M, V), then $\operatorname{res}(S) \subseteq \operatorname{res}(V)^{n}$ is definable in the T-model $\operatorname{res}(V)$.
- In other words, $\operatorname{res}(V)$ is stably embedded in (M, V), as is R for R any maximal elementary substructure of M contained in V.

Theorem

If $A \subseteq M^{n}$ is definable in (M, V), then $r \operatorname{res}(A) \subseteq \operatorname{res}(V)^{n}$ is definable in the T-model $\operatorname{res}(V)$.

- We need to show that a set of the form $\{x: f(x) \in V\} \cap R^{n}$ is R-definable, where f is a T-definable function.
- We have the Marker-Steinhorn theorem:

Theorem

Let $M \prec N$ be an elementary pair of o-minimal structures, with M Dedekind complete in N. If $A \subseteq N^{n}$ is any N-definable set, then $A \cap M^{n}$ is M-definable.

- There is an $L_{R^{-}}$-formula $\phi(x, y)$ such that for any $a \in R^{k}$ and $b \in R$, we have $R \models \phi(a, b)$ exactly when $|f(a)|<b$.
- Thus, the formula $\exists y \phi(x, y)$ holds in R exactly when $f(x)$ is bounded by some element of R, and thus lies in V.
- Using the isomorphism between R and $\operatorname{res}(V)$, we get our desired definition of $\operatorname{res}(A)$ in $\operatorname{res}(V)$.

