
Our topic this week will be a concept called “T -convexity,”
defined by van den Dries and Lewenberg in 1995, in a paper
called “T -convexity and tame extensions.”

T -convexity is supposed to generalize the idea of a convex
subring of a real closed field.

Let M be a non-archimedean real closed field. Let V be a
convex subring.

The ring V has some nice properties. It is a valuation ring.

This means that each element of the field of fractions of V is
either in V or its inverse is.

Then the group Γ = M×/V× is the value group, and V /m is
the residue field, where m is the maximal ideal of V .

val is the map from M× to Γ, and res the map from V to
V /m.

Moreover, the residue field k is still real-closed.

The structure (M,V ) has quantifier elimination in the
language (+, ·, 0, 1, <,V ) (due to Cherlin and Dickmann).

O-minimal real closed fields

O-minimality was first defined by Pillay and Steinhorn. An ordered
structure M is o-minimal if any definable subset of M is a finite
union of points and intervals.
O-minimality was intended to be analogous to “minimal” in the
stable context. There are similarities, but many important
differences. For example, “strongly o-minimal” is equivalent to
“o-minimal.”
A fundamental fact about o-minimality is the Monotonicity
Theorem:

Monotonicity Theorem

Let M be any o-minimal structure, and f : (a, b)→ M any
M-definable function on the interval (a, b). Then there are
a = a0 < a1 < a2 < · · · < ak = b such that on each subinterval
(ai , ai+1) the function f is continuous and monotonic.

Our focus here is going to be o-minimal structures expanding fields,
or “o-minimal fields.” Note that any o-minimal field is real closed.

Convexity in o-minimal real closed fields

van den Dries and Lewenberg looked for a corresponding notion to
convexity in the more general area of o-minimal fields.
Given M an o-minimal field with theory T , if V is an arbitrary
convex ring, then V is still a valuation ring, but the residue field k
will only be a real closed field – it will not have any of the
additional structure.
For this reason, they introduced the notion of “T -convexity”:

Definition
Let M be an o-minimal field. A convex subring V ⊆ M is
T -convex if it is closed under all ∅-definable continuous total unary
functions on M.

T -convexity

A convex subring V is T -convex if it is closed under all ∅-definable
continuous total unary functions on M.
It turns out that V will also be closed under all n-ary ∅-definable
continuous total functions on M.
If R ≺ M with R ⊆ V , then V will even be closed under all n-ary
R-definable continuous total functions on M.



The residue field and elementary substructures

The operation res takes the T -convex ring V to the real closed
field res(V ).
If R ⊂ M is a substructure of M as a real closed field, with R ⊂ V
as well, then the map res : R → res(V ) is a ring homomorphism
between fields, and so injective.
The map res will be surjective if and only if V = R + m.
Such a surjection then induces the structure of a model of T on
the residue field res(V ).

When is res surjective on R?

Theorem
If R ≺ M with R ⊂ V , then res is surjective on R if and only if R
is maximal among elementary substructures of M with R ⊆ V .

One direction is easy:

If res is surjective, then for any x ∈ V , the field R contains
some element x ′ ∈ x + m.

If S ≺ M with R ( S ⊆ V , then let a ∈ S \ R.

There is some a ∈ R with a− a′ ∈ m, so a− a′ ∈ S .

Thus 1/(a− a′) ∈ S , but 1/(a− a′) /∈ V . ⇒⇐.

Theorem
If R ≺ M with R ⊂ V , then res is surjective on R if and only if R
is maximal among elementary substructures of M with R ⊆ V .

We have done ⇒. Time for ⇐.

Lemma
If R is maximal among elementary substructures of M with
R ⊆ V , then R is cofinal in V .

Proof.

Suppose that R is not cofinal in V . Then there is some a ∈ V
with a > R.

Let t(a) be any element in R〈a〉, with t an LR -term.

Fix c ∈ R with t continuous on (c ,∞).

Since a > R, we know that a > c + 1. Define f by
f (x) = t(c + 1) for x ≤ c + 1 and f (x) = t(x) for x > c + 1.

Maximality of R implies surjectivity of res

If res is not surjective on R, then there is some a ∈ res(V )
with res−1(a) ∩ R = ∅.
We consider R〈a〉. Let t(a) be any element in R〈a〉, with t an
LR -term.

We can suppose that t is a continuous function on an interval
(c , d) with c , d ∈ R ∪ {±∞}.
If (c , d) = (−∞,∞), then t is continuous on M, so t(a) ∈ V .

If c > −∞, then since res(c) 6= res(a), we have
1/|a− c | ∈ V . Likewise, if d <∞ then 1/|d − a| ∈ V .

Since R is cofinal in V , we can find ε < 1/|a− c |, 1/|d − a|
with ε ∈ R+.

Define f by f (x) = t(c + ε) for x ≤ c + ε, f (x) = t(x) for
x ∈ (c + ε, d − ε), and f (x) = t(d − ε) for x ≥ d − ε.



Maximal elementary substructures of M

It is not too hard to see that if R1 and R2 are two such
maximal elementary substructures of M contained in V , then
there is an isomorphism between them:

for any a ∈ R1, there is a unique a′ ∈ R2 with a− a′ ∈ m.

This isomorphism commutes with the res map from each Ri

onto res(V ).

Thus, we have a canonical way to make res(V ) into a model
of T , and even to consider it as an elementary substructure of
M.

Quantifier elimination for Tconvex

The theory Tconvex is just T , the theory of M, together with the
unary predicate V and the (infinitely many) statements that V is
T -convex.

Theorem
If T is universally axiomatizable and has quantifier elimination,
then Tconvex also has quantifier elimination. Tconvex is complete. If
T is model complete, so is Tconvex.

The main result here is that Tconvex has quantifier elimination.

Tconvex has quantifier elimination

van den Dries is enamored with a variant of the
“Robinson-Shoenfield” test for quantifier elimination, which
has two conditions:

1 Each substructure (R,V ) of a model of Tconvex has a
Tconvex-closure (R̃, Ṽ ), i.e. (R,V ) ⊆ (R̃, Ṽ ) and (R̃, Ṽ )
embeds over (R,V ) into every model of Tconvex extending
(R,V );

Satisfying (1) is not hard, since any substructure of a model
of Tconvex is a model of T together with a T -convex subring.
If the subring is proper, we are done, and if not, we can adjoin
an element larger than R to R, while keeping V fixed, yielding
a model of Tconvex.

Tconvex has quantifier elimination

The second condition for the Robinson-Shoenfield test:
2 If (R,V ) ⊆ (R1,V1) are models of Tconvex with R 6= R1, there

is an a ∈ R1 \ R such that (R〈a〉,V1 ∩ R〈a〉) can be embedded
over (R,V ) into some elementary extension of (R,V ).

This follows essentially from the fact that, given a T -convex
subring V of R ≺ S and an element a ∈ S with
|V | < a < |R \ V |, there are exactly two T -convex subrings
W of R〈a〉 with (R,V ) ⊆ (R〈a〉,W ) – one that contains a
and one that does not.

This ends the proof. An easy consequence is that Tconvex is
weakly o-minimal.

Any Tconvex-definable subset of M is a finite Boolean
combination of T -definable sets and sets of the form
{x : f (x) ∈ V } for T -definable functions f .



The value group

We now construct a language Lvg that we will use in
constructing a theory on Γ, the value group for the valued
field M.

Let Σ be the collection of all Lconvex-formulas ϕ with the
properties: Tconvex ` ∀~y(ϕ(~y)→ yi 6= 0) for i = 1, . . . , n, and
Tconvex ` ∀~x~y((ϕ(~x) ∧

∧
i≤n val(xi ) = val(yi ))→ ϕ(~y)).

For each ϕ ∈ Σ we add an n-ary predicate Uϕ to Lvg.

The interpretation of Uϕ is that Γ |= Uϕ(γ1, . . . , γn) if and
only if there are a1, . . . , an ∈ M with (M,V ) |= ϕ(a1, . . . , an)
and val(ai ) = γi for i = 1, . . . , n.

Γvg denotes Γ as an Lvg-structure.

Tvg is weakly o-minimal

This follows easily from the fact that Tconvex is weakly o-minimal.
But there is a stronger result:

Theorem
If T is power-bounded, Tvg is o-minimal. Moreover, up to an
extension by definitions, Tvg is just the theory of nontrivial ordered
vector spaces over K , the “field of exponents of T .”

Showing that Tvg is o-minimal follows from a very elegant lemma:

Lemma
Let f : V → R be definable in (M,V ). Then v(f (x)) is ultimately
constant: for some γ ∈ Γ ∪ {∞} and a ∈ V , we have v(f (x)) = γ
for all x ∈ V with x > a.

All functions are ultimately constant

Lemma
Let f : V → R be definable in (M,V ). Then v(f (x)) is ultimately
constant: for some γ ∈ Γ ∪ {∞} and a ∈ V , we have v(f (x)) = γ
for all x ∈ V with x > a.

To prove this lemma, we will use a fact:

Fact
Let X and Y be linearly ordered sets such that Y has no largest
element. Let f : X → Y be a non-decreasing function such that
f (X ) is cofinal in Y . Then cofinality(X ) = cofinality(Y ).

Proof.
Define an equivalence relation E on X by aEb if and only if
f (a) = f (b). Let S be a set of representatives for this equivalence
relation. Then cofinality(X ) = cofinality(S) = cofinality(f (S)) =
cofinality(Y ).

All functions are ultimately constant: a nice model

Lemma
Let f : V → R be definable in (M,V ). Then v(f (x)) is ultimately
constant: for some γ ∈ Γ ∪ {∞} and a ∈ V , we have v(f (x)) = γ
for all x ∈ V with x > a.

We will want to use a certain well-behaved model of Tconvex.

Given M a model of T , we can adjoin an “infinitely large”
element t, giving us the model M〈t〉, whose elements can be
thought of as the germs of M-definable functions near ∞.

There is a proper T -convex subring
FinM(M〈t〉) = {f ∈ M〈t〉 : |f | < a for some a ∈ M}.
We will prove the lemma in the structure
(M〈t〉,FinM(M〈t〉)), which has value group isomorphic to K ,
the field of exponents of M.



All functions are ultimately constant: proof

Lemma
Let f : V → R be definable in (M,V ). Then v(f (x)) is ultimately
constant.

Proof.

We are working in (M〈t〉,FinM(M〈t〉)).

It is not too hard to show that we may take f to be positive
and strictly increasing on V , so v(f (x)) is decreasing on V .

If the desired property does not hold, then the set
∆ = {v(f (x)) : x ∈ V } ⊆ K has no smallest element, so by
the previous fact, we know that
cofinality(M) = cofinality(V ) = downward cofinality(∆).

But if we replace M by an elementary extension M ′ with
cofinality larger than |K |, we have a contradiction.

Tvg is o-minimal and all functions are piecewise-linear

Using the lemma, we can show that Tvg is o-minimal, since
given any definable set in (M,V ), we can express it using
functions, and then see that these functions must have infema
in Γ.

The fact that Tvg is essentially the theory of ordered vector
spaces comes from the fact that all definable functions in Tvg

are piecewise-linear.

Then a result of Loveys and Peterzil implies the conclusion.

Piecewise-linearity comes directly from power-boundedness
and the exponential-power-bounded dichotomy in o-minimal
theories.

Power-boundedness and piecewise-linearity

Any definable function φ in Tvg can be “lifted” to a definable
function f in Tconvex.

This is by definable choice for Tconvex – for each x ∈ V , we
must choose some y with val(y) = φ(val(x)).

By power-boundedness, there is some a ∈ M \ {0} and some
λ ∈ K such that limx→∞ f (x)/xλ = a.

Hence φ(γ) = λ · γ + val(a) for all sufficiently small γ ∈ Γ.

Mapping finite intervals to intervals near ∞, we can show that
above and below every point α ∈ Γ is an interval on which φ
is K -linear.

We can then show that the set of points in Γ that do not have
an interval around them on which φ is K -linear is finite.

Finally, the intervals around α ∈ Γ can be “glued” together,
except at this finite set of bad points.

Applications to preparation theorems

The fact that all definable functions in Tvg are piecewise-linear has
a very nice consequence, in the form of a preparation theorem:

Theorem
Let f : Rn+1 → R be definable in a polynomially-bounded
o-minimal structure on R. Then there is a definable finite covering
C of Rn+1, and for each S ∈ C there are exponents λ and functions
θ, a : Rn → R and u : Rn+1 → R, all definable, such that graph(θ)
is disjoint from S and f (x , y) = |y − θ(x)|λa(x)u(x , y), with
|u(x , y)| ≤ 1/2.



Tame extensions

Fix R ≺ M, maximal in V .

Any element in M \ R is “infinitesimal” over R – either
infinitesimally close to an element of R, or close to ±∞.

The type over R of any element of M \ R is thus definable.

How about types of tuples of elements of M \ R?

The Marker-Steinhorn theorem on definable types gives us the
answer:

Theorem
Let M ≺ N be an elementary pair of o-minimal structures. If M is
Dedekind complete in N, then N realizes only definable n-types
over M for all n.

A consequence of this theorem is the following:

Theorem
Let M ≺ N be an elementary pair of o-minimal structures, with M
Dedekind complete in N. If A ⊆ Nn is any N-definable set, then
A ∩Mn is M-definable.

Definability of types gives tameness

Theorem
Let M ≺ N be an elementary pair of o-minimal structures, with M
Dedekind complete in N. If A ⊆ Nn is any N-definable set, then
A ∩Mn is M-definable.

This theorem has important consequences for the Tconvex

situation. Namely,

Theorem
If A ⊆ Mn is definable in (M,V ), then res(S) ⊆ res(V )n is
definable in the T -model res(V ).

In other words, res(V ) is stably embedded in (M,V ), as is R
for R any maximal elementary substructure of M contained in
V .

Stable embeddedness

Theorem
If A ⊆ Mn is definable in (M,V ), then res(A) ⊆ res(V )n is
definable in the T -model res(V ).

To prove this, we will first show that A ∩ Rn is definable in R
for R a maximal elementary substructure of M contained in V .

By quantifier elimination, A is a Boolean combination of
T -definable sets and sets of the form {x : f (x) ∈ V } for
T -definable functions f .

The Marker-Steinhorn theorem already tells us that the
intersection of a T -definable set with Rn will be R-definable.

Thus, it only remains to show that sets of the form
{x : f (x) ∈ V } ∩ Rn are R-definable.

Theorem
If A ⊆ Mn is definable in (M,V ), then res(A) ⊆ res(V )n is
definable in the T -model res(V ).

We need to show that a set of the form {x : f (x) ∈ V } ∩ Rn

is R-definable, where f is a T -definable function.

We have the Marker-Steinhorn theorem:

Theorem
Let M ≺ N be an elementary pair of o-minimal structures, with M
Dedekind complete in N. If A ⊆ Nn is any N-definable set, then
A ∩Mn is M-definable.

There is an LR -formula φ(x , y) such that for any a ∈ Rk and
b ∈ R, we have R |= φ(a, b) exactly when |f (a)| < b.

Thus, the formula ∃yφ(x , y) holds in R exactly when f (x) is
bounded by some element of R, and thus lies in V .

Using the isomorphism between R and res(V ), we get our
desired definition of res(A) in res(V ).


