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Extending Functions to Closures

Let γ be a curve in Mn with one endpoint the origin, and let f be an M-definable bounded n-ary

function. Can we find an initial segment of γ and a definable set containing that initial segment on

which f is continuous, or extends continuously?1

Note that we can certainly find a definable set containing γ \ {0} on which f is continuous. The

difficulty is in extending f continuously to 0, which is equivalent to extending f continuously to the

closure of the definable set.

Definable γ works

Example. Let f(x, y) = min(1, y/x), and let γ be any definable curve in the first quadrant with left

endpoint 0.

We can take a pair of cubics whose derivatives at 0 are the same as the curve’s at 0, giving us a cell

on which f extends continuously to the closure.

γ(t) = 〈t, t/4 + t3/5〉
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Non-definable curves

What about the question for non-definable curves? Given a “well-behaved” non-definable curve, can

we find a set on which the function is continuous, which contains the curve, and on whose closure the

function extends continuously.

Counterexample with a non-definable curve

Let M = (R, +, ·, <, 0, 1). Let f(x, y) be min(1, y/x), and let γ(t) = 〈t,−t/ ln t〉, so γ is undefinable in

M . Since γ is definable in the o-minimal expansion of M , (R, +, ·, <, exp), γ is certainly “well-behaved”.

1Patrick Speissegger raised this question with me, and parts of the following work were done first by him in a different

form, particularly one of the cases in the main proposition.
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f(γ(t)) = −1/ ln t, so limt→0+ f(γ(t)) = 0.

• −1/ ln t goes to 0, but it is also greater than td, for any d > 0, for sufficiently small t. Thus, −t/ ln t

is greater than t1+d, but less than at, for every a ∈ R+.

• It is not hard to see that any definable set in (R, +, ·, <, 0, 1) that contains γ must contain the curve

〈t, at〉, for some real positive a, as well as the curve 〈t, bt1+q〉, for some real positive b and positive

rational q.

• f cannot be continuously extended onto this set’s closure, because along the latter curve, its limit

at the origin is 0, while along the linear curve, it is a.

y = x/4
〈t,−t/ ln t〉

y = x3/2

Why did γ fail?

The failure of γ can be seen as coming from the fact that we could not squeeze γ sufficiently. The gap

between a linear function and a higher-power function is too great. To more closely analyze this, we

can abstract out the “type” of γ, by considering the type of an infinitesimal point on the curve, which

is given by the following.

• For every r > 0 ∈ R+, x1 < r is in tp(γ).

• For every r ∈ R+, x2 < rx1 is in tp(γ).

• For every r ∈ R, q ∈ Q+, x2 > rx1+q
1 is in tp(γ).

Since we have equivalence of definable set membership for curves and their types, we can rephrase

our failure with γ as follows:

Example. Take our model to be (R, +, ·, <, 0, 1). Let p(x, y) be the type which says that x is greater

than 0 but less than every real, and that y is less than rx, for any r ∈ R+, but greater than rx1+q, for

any r ∈ R, q ∈ Q+. It is easy to see that these conditions generate a complete consistent type. Let f

be as before, min(1, y/x).

There is no definable set, C, with C ∈ p, f continuous on C, and f extending continuously to C.

If we let 〈c1, c2〉 |= p, the problem here is that the pre-images of elements of R under f(c1,−) are

coinitial at c2 in R(c1).
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Scale

Definition (Marker). For A = acl(A), p ∈ S1(A) is a cut iff it is non-algebraic and (1) there are

formulas of the form a < x and x < a in p, and (2) for every formula of the form a < x in p, there is

b > a such that b < x is in p, and similarly for x < a. p is a noncut if it is non-algebraic and not a cut.

Definition (∼Marker-Steinhorn). Let A ⊂ B, and p ∈ S1(B), with p a cut over B. Let c be any

realization of p. If there is a B-definable unary function, f , such that f(A) is both cofinal in B below

c and coinitial in B above c, we say that p is in scale on A. Otherwise, if there is such an f with f(A)

cofinal or coinitial, but not both, we say that p is near scale on A. If no such f exists, we say that p is

out of scale on A.

Scale examples

Let M = (R, +, ·, 0, 1, <). Let N = M(ε), where ε is infinitesimal. For notation, let P = R+.

1. If c |= p = tp(ε
√

2/N), then p is out of scale on M .
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2. If c |= p = tp(
∑∞

i=1 εi/N), then p is out of scale on M .
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3. Let M = (Qrcl, +, ·, 0, 1, <), and let N = M(ε). If c |= p = tp(πε/N), then p is in scale on M since,

if f(x) = xε, f(M) is both cofinal and coinitial at c in N .

4. Let M(R, +, ·, 0, 1, <) and let N = M(ε). Let c < P , but larger than εd, for any rational d > 0.

b b b

0 ε c

R+

tp(c/N) is near scale on M since, if f(x) = x, f(M) is coinitial at c in N . However, note that, if

we take N ′ = M(c), then ε is a noncut over N ′, so the scale issue does not arise.

5. Let M = (R, +, ·, 0, 1, <) and N = M(ε), and let c be smaller than rε for r ∈ R+, but larger than εq

for q ∈ Q>1.
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tp(c/N) is near scale on M since, if f(x) = xε, f(M) is coinitial at c in N .
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Leaping to conclusions

If we look at our examples, we see that, in addition to Example 5, Example 3, with 〈ε, πε〉, is easily seen

to have the same failure, with the same function of min(y/x, 1). So there are problems if a coordinate

is near scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the previous ones is the necessary

criterion.

But Example 4 shows that we must be more careful – while 〈ε, c〉 has the second coordinate near

scale over the first, if we reverse the coordinates, 〈c, ε〉 is just one infinitesimal followed by another, and

it is not hard to show such a type cannot yield a counterexample.

Since order matters as to the scale of a coordinate of a type over the previous ones, our goal is to

give a presentation of the type that will enable us to examine whether one coordinate is out of scale

over the previous ones without having the rug pulled out from under us via a reordering.

Decreasing types

Definition. Let A be a set. Define a ≺A b iff there exists a′ ∈ dcl(aA) such that a′ > 0, and

(0, a′) ∩ dcl(bA) = ∅. Define a ∼A b if a 6≺A b and b 6≺A a. Finally, let a -A b if a ∼A b or a ≺A b.

This definition captures the idea that a is infinitesimal relative to b over A, or at least that some

element of dcl(Aa) is.

Lemma. ∼A is an equivalence relation, and ≺A totally orders the ∼A-classes.

Notation. Assume that we have a fixed sequence c = 〈ci〉i∈I . Then the ≺i-ordering is the ≺c<i
-ordering.

If we also have a fixed base set, A, then it will be the ≺Ac<i
-ordering.

Definition. Let p(x1, . . . , xn) ∈ Sn(A). p is decreasing if, for some (any) realization, c = 〈c1, . . . , cn〉

of p, cj -i ci, for j > i.

Lemma. Any n-type can have its coordinates reordered so that it is decreasing.

Example. Consider the tuple 〈ε, ε + ε′′, δ, ε′〉, where 1 � ε � ε′ � ε′′, and δ is a cut over ε. The tuple

can be reordered as 〈ε, δ, ε′, ε + ε′′〉, which is decreasing.

b b

b

b

ε δ

ε′

ε + ε′′
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Main result

Theorem. Let M be an o-minimal structure expanding a real closed field. Let p ∈ Sn(M) be a decreas-

ing type “near” the origin. Then the following two conditions are equivalent:

1. For c = 〈c1, . . . , cn〉, some (any) realization of p, tp(ci/c<iM) is a noncut, or out of scale on M , for

i = 1, . . . , n.

2. For every M-definable function, f , bounded on some M-definable set in p, there is an M-definable

set, C, in p, such that f is continuous on C and extends continuously to cl(C).

Sketch of Backward Proof

The backward direction is fairly straightforward. Suppose that we have failure of the first condition.

Then, at some coordinate, say the last one, we have some Mc<n-definable function, g, such that g(M)

is near scale or in scale on M at cn.

Consider f = g−1 as a function of c<n and x. If C is any definable set containing c, we can choose

a 6= b ∈ M such that g(a), g(b) ∈ Cc<n
, and then, letting γ1 and γ2 be curves given by taking the

pre-images of a and b under f , we get that it is impossible for f to extend continuously to the closure

of C.

b 〈c1, c2〉
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f(x) = a for x ∈ γ1, f(x) = b for x ∈ γ2.

Sketch of forward proof

For the forward direction, the proof works backwards along the coordinates of p. The auxiliary induction

assumption that we use is that, when a and a′ are tuples that agree through the ith coordinate,

|f(a)− f(a′)| is bounded by a function that goes to 0 as the last coordinate that was a noncut goes to

its limit.

This ensures that, when the ith coordinate is a noncut, we can continuously extend f to the closure

point. To maintain the above induction assumption, we can choose a definable curve in our set, and
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further restrict our set so that f applied to the curve stays very “close” to the limit value of f on the

curve. Then, given two points that agree on their first i− 1 coordinates, find a point on the curve that

agrees with them on their first i coordinates, and use a triangle inequality:

b

b

b

x0 a

a′

b

b

b
b′

|f(b) − f(x0)|, |f(b′) − f(x0)|, |f(a) − f(b)|, |f(a′) − f(b′)| all small.

Cut case

The noncut case is the one where any difficulties can lead to failure. The cut case is where difficulties

start – where we may fail at preserving the induction assumption. We will have to ensure that two

points, a and a′, that agree up to their ith coordinates, will give similar values when f is applied to

them. By doing the “opposite” of what was done in the proof of the backward direction, we can restrict

to an interval that does not have any points from f−1(M). From that, one can prove that two points

with ith coordinates in that interval are “close enough” when f is applied to them, using results about

decreasing types.
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tp(f(a)/M) = tp(f(a′)/M).

(Surprisingly, also tp(f(a)/Ma<k(i)) = tp(f(a′)/Ma<k(i)).)

Conclusion

With the theorem, our original case of a curve is resolved, by taking the curve’s limit type.

While in this case, we were restricted from taking types that were interdefinable with our original,

in circumstances where one can (for example, when examining definability), decreasing types allow for

tighter results, since all near scale and in scale types can be removed – even our Example 5 disappears.


