
Products of Types

Definition. (7) Let p(x), q(y) be definable types. Define
r(x, y) = p(x) ⊗ q(y) by

(drxy)φ(xy, z) = (dpx)(dqy)φ(xy, z)

for those formulas φ for which the right hand side is defined.
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(drxy)φ(xy, z) = (dpx)(dqy)φ(xy, z)

for those formulas φ for which the right hand side is defined.

If p, q are complete, then so is r.
Remark 2.3. (7) Let φ be a formula in variables x, y, z. If φ(x; yz) lies in
the domain of p, and φ(y;xz) lies in the domain of q and is stable, then
φ(xy; z) lies in the domain of p⊗ q.

– p.



Products of Types

Definition. (7) Let p(x), q(y) be definable types. Define
r(x, y) = p(x) ⊗ q(y) by

(drxy)φ(xy, z) = (dpx)(dqy)φ(xy, z)

for those formulas φ for which the right hand side is defined.

If p, q are complete, then so is r.
Remark 2.3. (7) Let φ be a formula in variables x, y, z. If φ(x; yz) lies in
the domain of p, and φ(y;xz) lies in the domain of q and is stable, then
φ(xy; z) lies in the domain of p⊗ q.

Proof. Since φ is stable, (dqy)φ(y;xz) is equivalent to a boolean

combination of formulas phi(bi;xz), all of which lie in dom(p).
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More Products of Types

Lemma 2.4. (7) If p(x) is a 0-definable type, a |= p, and qa(y) is a
definable type of the theory Ta, then there exists a unique definable type
r(x, y) such that for any C , if (a, b) |= r|C then a |= p|C and
b |= qa|Ca.
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definable type of the theory Ta, then there exists a unique definable type
r(x, y) such that for any C , if (a, b) |= r|C then a |= p|C and
b |= qa|Ca.

Proof. Given φ(xy, z), let φ∗(x, z) be a formula such that
φ∗(a, z) = (dqa

y)φ(a, y, z). The definition may not be uniform in a, but

if φ′, φ′′ are two possibilities, then (dpx)(φ
′ ≡ φ′′). Then we can define

(drxy)φ(xy, z) = (dpx)φ
∗(x, z).
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More Products of Types

Lemma 2.4. (7) If p(x) is a 0-definable type, a |= p, and qa(y) is a
definable type of the theory Ta, then there exists a unique definable type
r(x, y) such that for any C , if (a, b) |= r|C then a |= p|C and
b |= qa|Ca.

Proof. Given φ(xy, z), let φ∗(x, z) be a formula such that
φ∗(a, z) = (dqa

y)φ(a, y, z). The definition may not be uniform in a, but

if φ′, φ′′ are two possibilities, then (dpx)(φ
′ ≡ φ′′). Then we can define

(drxy)φ(xy, z) = (dpx)φ
∗(x, z).

It actually suffices that qa be definable over acl(a). This
follows by the following lemma.
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Almost Done with Products of Types

Lemma 2.5. (7) Let M ⊆ N be models, and let tp(a/N) be
M -definable. Let c ∈ acl(Ma). Then tp(ac/N) is definable over M .
Indeed, tp(a/N) ∪ tp(ac/M) |= tp(ac/N).
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Lemma 2.5. (7) Let M ⊆ N be models, and let tp(a/N) be
M -definable. Let c ∈ acl(Ma). Then tp(ac/N) is definable over M .
Indeed, tp(a/N) ∪ tp(ac/M) |= tp(ac/N).

Note that this implies that if qa is definable over acl(a), that it
is definable over a, since each formula which uses a
parameter of acl(a) is equivalent to one which does not,
since the type of every element of acl(Ma) is definable over
Ma.
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Almost Done with Products of Types

Lemma 2.5. (7) Let M ⊆ N be models, and let tp(a/N) be
M -definable. Let c ∈ acl(Ma). Then tp(ac/N) is definable over M .
Indeed, tp(a/N) ∪ tp(ac/M) |= tp(ac/N).

Proof. Let φ(x, y) be a formula over M such that φ(a, c) holds, and
such that φ(a, y) has m solutions, with m least possible. If φ(a, y) does
not imply a complete type over Na, there exists ψ(u, x, y) over M and
d ∈ N such that ψ(d, a, y) implies φ(a, y), and ψ(d, a, y) has k
solutions with 1 ≤ k < m. Since tp(a/N) is M -definable, there exists

d′ ∈M satisfying the p-definition of the formulas below, so we have

∃k(ψ(d′, a, y)),∃m−ky(φ(a, y) ∧ ¬ψ(d′, a, y)).

But then either ψ(d′, a, c) or ¬ψ(d′, a, c), contradicting minimality of
m.
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Random, Germs

Notation 2.1. (6) Given a type p over C with a unique
Aut(U/C)-invariant extension p̃ to U, write a ↓C b if
a |= p̃| acl({b, C}).
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a |= p̃| acl({b, C}).

Definition. (4) Let A ⊆M |= T . Let StA be the family of all stable,
stably embedded A-definable sets – “the stable part of TA.” We write
StA(c) for A(c) ∩ StA, where A(c) = dcl(A ∪ {c}).
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Random, Germs

Notation 2.1. (6) Given a type p over C with a unique
Aut(U/C)-invariant extension p̃ to U, write a ↓C b if
a |= p̃| acl({b, C}).

Definition. (4) Let A ⊆M |= T . Let StA be the family of all stable,
stably embedded A-definable sets – “the stable part of TA.” We write
StA(c) for A(c) ∩ StA, where A(c) = dcl(A ∪ {c}). As well, let
ΓA(c) = dcl(A, c) ∩ dcl(A ∪ Γ).

Definition 2.6. (7,8) Two definable functions, f(x, b), g(x, b′) are said to
have the same p-germ (for p a definable type) if
|= (dpx)f(x, b) = g(x, b′). The p-germ of f(x, b) is defined over C if

whenever tp(b/C) = tp(b′/C), f(x, b), f(x, b′) have the same
p-germ. Note that the equivalence relation of giving the same p-germ is
definable, by considering f(x, y) = f(x, y′).
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Stably Dominated Types

Definition 2.8. (8) A partial type P is stably dominated over C if there
exist C-definable maps αi : P → Di, D stable, α = (αi)i, such that
α(a) ↓ b implies

tp(b/Cα(a)) |= tp(b/Ca),

for any tuple b.

– p.



Stably Dominated Types

Definition 2.8. (8) A partial type P is stably dominated over C if there
exist C-definable maps αi : P → Di, D stable, α = (αi)i, such that
α(a) ↓ b implies

tp(b/Cα(a)) |= tp(b/Ca),

for any tuple b.

We call a definable set D stable if every formula φ(x; y) with
y = (y1, . . . , ym) such that φ⇒

∧
i≤mD(yi) is stable. This is

often called stable,stably embedded. ??
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Stably Dominated Types

Definition 2.8. (8) A partial type P is stably dominated over C if there
exist C-definable maps αi : P → Di, D stable, α = (αi)i, such that
α(a) ↓ b implies

tp(b/Cα(a)) |= tp(b/Ca),

for any tuple b.

We call a definable set D stable if every formula φ(x; y) with
y = (y1, . . . , ym) such that φ⇒

∧
i≤mD(yi) is stable. This is

often called stable,stably embedded. ??
A type over C is stably dominated if it is stably dominated
over C via some α.
Proposition 2.9. (8) Let p be a complete type over C = acl(C). If p is
stably dominated, it has a C-definable extension to U, and this extension
is unique.
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Properties of stably dominated types

Most of these are proved in the previous paper, and so are
not done here.
Proposition 2.10. (8) Let p = tp(a/C) be stably dominated.
1. (Symmetry) If tp(b/C) is also stably dominated, a ↓C b iff b ↓C a.
2. (Transitivity) a ↓C bd iff a ↓C b and a ↓acl(Cb) d.

3. (Base change) If a ↓C b, then tp(a/ acl(Cb)) is stably dominated.
4. If tp(d/C) and tp(b/ acl(Cd)) are stably dominated, then so it

tp(bd/C). Conversely, if a ∈ dcl(Cb) and tp(b/C) is stably
dominated, so is tp(a/C).

5. For any formula φ(x, y), (dpx)(φ) is a positive boolean combination

of formulas φ(ai, y), where ai |= p|(C ∪
⋃

j<i{aj}).
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Metastability

Let Γ be a sort of T which is stably embedded (every subset
of Γn defined with parameters is definable with parameters
in Γ) and orthogonal to the stable part of T (no infinite
definable subset of Γeq is stable).
Definition 1.2. (3) T is metastable (over Γ) if for any partial type P over
a base C0 there exists C ⊃ C0 and a ∗-definable (over C) map
γC : P → Γ with tp(a/γC(a)) stably dominated.
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γC : P → Γ with tp(a/γC(a)) stably dominated.

In addition, we assume every type over an algebraically
closed subset of a model of T eq has an
automorphism-invariant extension to the model. This
assumption, which Hrushovski labels (E), may be
removable.
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Metastability

Let Γ be a sort of T which is stably embedded (every subset
of Γn defined with parameters is definable with parameters
in Γ) and orthogonal to the stable part of T (no infinite
definable subset of Γeq is stable).
Definition 1.2. (3) T is metastable (over Γ) if for any partial type P over
a base C0 there exists C ⊃ C0 and a ∗-definable (over C) map
γC : P → Γ with tp(a/γC(a)) stably dominated.

In addition, we assume every type over an algebraically
closed subset of a model of T eq has an
automorphism-invariant extension to the model. This
assumption, which Hrushovski labels (E), may be
removable.
We will say that C is a good base for P . A good base is a
good base for all partial types over it.
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FD

Definition. (4) We refer to the Morley rank of a stable formula as the
(Morley) dimension.
The following conditions are known as (FD):
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3. Let D be a definable set. The Morley dimension of f(D), where f

ranges over all definable functions (with parameters) such that f(D)
is stable, takes a maximum value dimst(D). Similarly, the o-minimal
dimension of g(D), where g ranges over all definable functions (with
parameters) such that g(D) is Γ-internal, takes a maximum value
dimo(D).
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Definition. (4) We refer to the Morley rank of a stable formula as the
(Morley) dimension.
The following conditions are known as (FD):
1. Γ is o-minimal (in fact, it is usually assumed to be a pure group).
2. Morley dimension is definable in families: if Dt is a definable family of

definable sets then {t |MR(Dt) = m} is definable.
3. Let D be a definable set. The Morley dimension of f(D), where f

ranges over all definable functions (with parameters) such that f(D)
is stable, takes a maximum value dimst(D). Similarly, the o-minimal
dimension of g(D), where g ranges over all definable functions (with
parameters) such that g(D) is Γ-internal, takes a maximum value
dimo(D).

Definition. (4) A definable set X is Γ-internal if X ⊆ dcl(Γ, F ) for some

finite set F ; equivalently for any M �M ′ |= T ,

X(M ′) ⊆ dcl(M ∪ Γ(M ′)).
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FD

Definition. (4) We refer to the Morley rank of a stable formula as the
(Morley) dimension.
The following conditions are known as (FD):
1. Γ is o-minimal (in fact, it is usually assumed to be a pure group).
2. Morley dimension is definable in families: if Dt is a definable family of

definable sets then {t |MR(Dt) = m} is definable.
3. Let D be a definable set. The Morley dimension of f(D), where f

ranges over all definable functions (with parameters) such that f(D)
is stable, takes a maximum value dimst(D). Similarly, the o-minimal
dimension of g(D), where g ranges over all definable functions (with
parameters) such that g(D) is Γ-internal, takes a maximum value
dimo(D).

For the purposes of (FD), it is equivalent to ask that
g(D) ⊆ Γn, since Γ eliminates imaginaries.
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FDω and Remarks

An addditional hypothesis often used is FDω
(4): Any set is

contained in a good base M which is also a model.
Moreover, for any acl-finitely generated F ⊆ Γ and F ′ ⊆ StM
over M , isolated types over M ∪ F ∪ F ′ are dense.
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(4): Any set is

contained in a good base M which is also a model.
Moreover, for any acl-finitely generated F ⊆ Γ and F ′ ⊆ StM
over M , isolated types over M ∪ F ∪ F ′ are dense.

Remarks (4)

1. Write
dimdef

st (d/B) = min{dimst(D) | d ∈ D,D is B-definable}. If
B′ = B(d), then dimdef

st (B′/B) = dimdef
st (d/B). Note that

we may have dimdef
st (B′/B) > dimStB(B′/B).
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FDω and Remarks

An addditional hypothesis often used is FDω
(4): Any set is

contained in a good base M which is also a model.
Moreover, for any acl-finitely generated F ⊆ Γ and F ′ ⊆ StM
over M , isolated types over M ∪ F ∪ F ′ are dense.

Remarks (4)

1. Write
dimdef

st (d/B) = min{dimst(D) | d ∈ D,D is B-definable}. If
B′ = B(d), then dimdef

st (B′/B) = dimdef
st (d/B). Note that

we may have dimdef
st (B′/B) > dimStB(B′/B).

2. (FDω) is true for ACVF, with all imaginary sorts included.
(FD) is true for all C-minimal expansions of ACVF.
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Strong Germs

Proposition 2.13. (8) (The strong germ lemma). Let p be stably
dominated. Assume p as well as the p-germ of f(x, b) are defined over
C = acl(C). Then there exists a C-definable function g with the same
p-germ as f(x, b).
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dominated. Assume p as well as the p-germ of f(x, b) are defined over
C = acl(C). Then there exists a C-definable function g with the same
p-germ as f(x, b).

Proposition 2.14. (8) A definable type p is stably dominated iff for any
definable function g on p with codomain Γ, the p-germ of g is constant.
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Strong Germs

Proposition 2.13. (8) (The strong germ lemma). Let p be stably
dominated. Assume p as well as the p-germ of f(x, b) are defined over
C = acl(C). Then there exists a C-definable function g with the same
p-germ as f(x, b).

Proposition 2.14. (8) A definable type p is stably dominated iff for any
definable function g on p with codomain Γ, the p-germ of g is constant.

Write g(p) for the constant value of the p-germ. The
property of p is referred to as orthogonality of p to Γ. Note
that this is strictly weaker than orthogonality of D to Γ for
some definable D ∈ p.
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Descent, Question and Answer

Proposition 2.11. (8) (Descent) Let p, q be Aut(U/C)-invariant ∗-types.
Assume that whenever b |= q|C , the type p|Cb is stably dominated.
Then p is stably dominated.
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Proposition 2.11. (8) (Descent) Let p, q be Aut(U/C)-invariant ∗-types.
Assume that whenever b |= q|C , the type p|Cb is stably dominated.
Then p is stably dominated.

Question 2.12. (8) Can the descent lemma be proved without the
additional hypothesis (E) (that invariant extensions always exist)? Does
(E) follow from metastability over an o-minimal Γ?
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Descent, Question and Answer

Proposition 2.11. (8) (Descent) Let p, q be Aut(U/C)-invariant ∗-types.
Assume that whenever b |= q|C , the type p|Cb is stably dominated.
Then p is stably dominated.

Question 2.12. (8) Can the descent lemma be proved without the
additional hypothesis (E) (that invariant extensions always exist)? Does
(E) follow from metastability over an o-minimal Γ?

The answer to the second question is yes.
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Proof of Answer

Let p be any type over C0, some set. We wish to show that p
can be extended to an automorphism-invariant type over U.
Expand C0 to a good base for p, C, and let γC and α be the
maps guaranteed to us by metastability. We have a
“decomposition” of p into two types: given a |= p, we have
γC(a), and we have α(a). Note that since α(a) is in some
stable, stably embedded D, tp(α(a)) has an invariant
extension. As well, tp(γC(a)/α(a)) has an invariant
extension: Γ is stably embedded, so we need only extend
the type to one over Γ. O-minimal types are categorizable
as cuts or noncuts. Each has a simple extreme extension.
Thus, tp(α(a), γC(a)) has an automorphism-invariant
extension.
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Proof of Answer

Now, consider q(x, y, z) = tp((α(a), γC(a), a)/C). Let q′ be
the extension of q induced by the automorphism-invariant
extension of tp(α(a), γC(a)). I claim that q′ is a complete
type, and is automorphism-invariant. This is because for
any parameter, b̄, q implies that tp(z/b̄) ⊂ q′ is implied by
tp(xy/b̄), showing that q′ is complete, and, since tp(xy/U) is
automorphism-invariant, so is tp(z/U), finishing the proof.
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