

Definition.⁽⁷⁾ Let p(x), q(y) be definable types. Define $r(x,y) = p(x) \otimes \mathbf{q}(y)$ by

$$(d_r xy)\phi(xy,z) = (d_p x)(d_q y)\phi(xy,z)$$

for those formulas ϕ for which the right hand side is defined.

Definition.⁽⁷⁾ Let p(x), q(y) be definable types. Define $r(x,y) = p(x) \otimes \mathbf{q}(y)$ by

$$(d_r xy)\phi(xy,z) = (d_p x)(d_q y)\phi(xy,z)$$

for those formulas ϕ for which the right hand side is defined. If p, q are complete, then so is r.

Definition.⁽⁷⁾ Let p(x), q(y) be definable types. Define $r(x,y) = p(x) \otimes \mathbf{q}(y)$ by

 $(d_r xy)\phi(xy,z) = (d_p x)(d_q y)\phi(xy,z)$

for those formulas ϕ for which the right hand side is defined. If p, q are complete, then so is r.

Remark 2.3.⁽⁷⁾ Let ϕ be a formula in variables x, y, z. If $\phi(x; yz)$ lies in the domain of p, and $\phi(y; xz)$ lies in the domain of q and is stable, then $\phi(xy; z)$ lies in the domain of $p \otimes q$.

Definition.⁽⁷⁾ Let p(x), q(y) be definable types. Define $r(x,y) = p(x) \otimes \mathbf{q}(y)$ by

 $(d_r xy)\phi(xy,z) = (d_p x)(d_q y)\phi(xy,z)$

for those formulas ϕ for which the right hand side is defined. If p, q are complete, then so is r.

Remark 2.3.⁽⁷⁾ Let ϕ be a formula in variables x, y, z. If $\phi(x; yz)$ lies in the domain of p, and $\phi(y; xz)$ lies in the domain of q and is stable, then $\phi(xy; z)$ lies in the domain of $p \otimes q$.

Proof. Since ϕ is stable, $(d_q y)\phi(y; xz)$ is equivalent to a boolean combination of formulas $phi(b_i; xz)$, all of which lie in dom(p).

More Products of Types

Lemma 2.4.⁽⁷⁾ If p(x) is a 0-definable type, $a \models p$, and $q_a(y)$ is a definable type of the theory T_a , then there exists a unique definable type r(x, y) such that for any C, if $(a, b) \models r | C$ then $a \models p | C$ and $b \models q_a | Ca$.

More Products of Types

.....

Lemma 2.4.⁽⁷⁾ If p(x) is a 0-definable type, $a \models p$, and $q_a(y)$ is a definable type of the theory T_a , then there exists a unique definable type r(x, y) such that for any C, if $(a, b) \models r | C$ then $a \models p | C$ and $b \models q_a | Ca$.

Proof. Given $\phi(xy, z)$, let $\phi^*(x, z)$ be a formula such that $\phi^*(a, z) = (d_{q_a}y)\phi(a, y, z)$. The definition may not be uniform in a, but if ϕ', ϕ'' are two possibilities, then $(d_p x)(\phi' \equiv \phi'')$. Then we can define

$$(d_r xy)\phi(xy,z) = (d_p x)\phi^*(x,z).$$

More Products of Types

Lemma 2.4.⁽⁷⁾ If p(x) is a 0-definable type, $a \models p$, and $q_a(y)$ is a definable type of the theory T_a , then there exists a unique definable type r(x, y) such that for any C, if $(a, b) \models r | C$ then $a \models p | C$ and $b \models q_a | Ca$.

Proof. Given $\phi(xy, z)$, let $\phi^*(x, z)$ be a formula such that $\phi^*(a, z) = (d_{q_a}y)\phi(a, y, z)$. The definition may not be uniform in a, but if ϕ', ϕ'' are two possibilities, then $(d_p x)(\phi' \equiv \phi'')$. Then we can define

$$(d_r xy)\phi(xy,z) = (d_p x)\phi^*(x,z).$$

It actually suffices that q_a be definable over acl(a). This follows by the following lemma.

Almost Done with Products of Types

Lemma 2.5.⁽⁷⁾ Let $M \subseteq N$ be models, and let $\operatorname{tp}(a/N)$ be M-definable. Let $c \in \operatorname{acl}(Ma)$. Then $\operatorname{tp}(ac/N)$ is definable over M. Indeed, $\operatorname{tp}(a/N) \cup \operatorname{tp}(ac/M) \models \operatorname{tp}(ac/N)$.

Almost Done with Products of Types

Lemma 2.5.⁽⁷⁾ Let $M \subseteq N$ be models, and let tp(a/N) be M-definable. Let $c \in acl(Ma)$. Then tp(ac/N) is definable over M. Indeed, $tp(a/N) \cup tp(ac/M) \models tp(ac/N)$. Note that this implies that if q_a is definable over acl(a), that it is definable over a, since each formula which uses a parameter of acl(a) is equivalent to one which does not, since the type of every element of acl(Ma) is definable over Ma.

Almost Done with Products of Types

Lemma 2.5.⁽⁷⁾ Let $M \subseteq N$ be models, and let $\operatorname{tp}(a/N)$ be M-definable. Let $c \in \operatorname{acl}(Ma)$. Then $\operatorname{tp}(ac/N)$ is definable over M. Indeed, $\operatorname{tp}(a/N) \cup \operatorname{tp}(ac/M) \models \operatorname{tp}(ac/N)$.

Proof. Let $\phi(x, y)$ be a formula over M such that $\phi(a, c)$ holds, and such that $\phi(a, y)$ has m solutions, with m least possible. If $\phi(a, y)$ does not imply a complete type over Na, there exists $\psi(u, x, y)$ over M and $d \in N$ such that $\psi(d, a, y)$ implies $\phi(a, y)$, and $\psi(d, a, y)$ has ksolutions with $1 \leq k < m$. Since $\operatorname{tp}(a/N)$ is M-definable, there exists $d' \in M$ satisfying the p-definition of the formulas below, so we have

$$\exists^k(\psi(d',a,y)), \exists^{m-k}y(\phi(a,y) \land \neg\psi(d',a,y)).$$

But then either $\psi(d', a, c)$ or $\neg \psi(d', a, c)$, contradicting minimality of m.

.....

Notation 2.1.⁽⁶⁾ Given a type p over C with a unique $Aut(\mathbb{U}/C)$ -invariant extension \tilde{p} to \mathbb{U} , write $a \downarrow_C b$ if $a \models \tilde{p} | \operatorname{acl}(\{b, C\}).$

Notation 2.1.⁽⁶⁾ Given a type p over C with a unique $Aut(\mathbb{U}/C)$ -invariant extension \tilde{p} to \mathbb{U} , write $a \downarrow_C b$ if $a \models \tilde{p} | \operatorname{acl}(\{b, C\}).$

Definition.⁽⁴⁾ Let $A \subseteq M \models T$. Let St_A be the family of all stable, stably embedded A-definable sets – "the stable part of T_A ." We write $St_A(c)$ for $A(c) \cap St_A$, where $A(c) = dcl(A \cup \{c\})$.

Notation 2.1.⁽⁶⁾ Given a type p over C with a unique $Aut(\mathbb{U}/C)$ -invariant extension \tilde{p} to \mathbb{U} , write $a \downarrow_C b$ if $a \models \tilde{p} | \operatorname{acl}(\{b, C\}).$

Definition.⁽⁴⁾ Let $A \subseteq M \models T$. Let St_A be the family of all stable, stably embedded A-definable sets – "the stable part of T_A ." We write $St_A(c)$ for $A(c) \cap St_A$, where $A(c) = \operatorname{dcl}(A \cup \{c\})$. As well, let $\Gamma_A(c) = \operatorname{dcl}(A, c) \cap \operatorname{dcl}(A \cup \Gamma)$.

Notation 2.1.⁽⁶⁾ Given a type p over C with a unique $Aut(\mathbb{U}/C)$ -invariant extension \tilde{p} to \mathbb{U} , write $a \downarrow_C b$ if $a \models \tilde{p} | \operatorname{acl}(\{b, C\}).$

Definition.⁽⁴⁾ Let $A \subseteq M \models T$. Let St_A be the family of all stable, stably embedded A-definable sets – "the stable part of T_A ." We write $St_A(c)$ for $A(c) \cap St_A$, where $A(c) = dcl(A \cup \{c\})$. As well, let $\Gamma_A(c) = dcl(A, c) \cap dcl(A \cup \Gamma)$.

Definition 2.6.^(7,8) Two definable functions, f(x,b), g(x,b') are said to have the same *p*-germ (for *p* a definable type) if $\models (d_p x) f(x,b) = g(x,b')$. The p-germ of f(x,b) is defined over *C* if whenever $\operatorname{tp}(b/C) = \operatorname{tp}(b'/C)$, f(x,b), f(x,b') have the same *p*-germ. Note that the equivalence relation of giving the same *p*-germ is definable, by considering f(x,y) = f(x,y').

Definition 2.8.⁽⁸⁾ A partial type P is stably dominated over C if there exist C-definable maps $\alpha_i : P \to D_i$, D stable, $\alpha = (\alpha_i)_i$, such that $\alpha(a) \downarrow b$ implies

$$\operatorname{tp}(b/C\alpha(a)) \models \operatorname{tp}(b/Ca),$$

for any tuple b.

Definition 2.8.⁽⁸⁾ A partial type P is stably dominated over C if there exist C-definable maps $\alpha_i : P \to D_i$, D stable, $\alpha = (\alpha_i)_i$, such that $\alpha(a) \downarrow b$ implies

$$\operatorname{tp}(b/C\alpha(a)) \models \operatorname{tp}(b/Ca),$$

for any tuple b.

We call a definable set *D* stable if every formula $\phi(x; y)$ with $y = (y_1, \ldots, y_m)$ such that $\phi \Rightarrow \bigwedge_{i \le m} D(y_i)$ is stable. This is often called *stable,stably embedded*. ??

Definition 2.8.⁽⁸⁾ A partial type P is stably dominated over C if there exist C-definable maps $\alpha_i : P \to D_i$, D stable, $\alpha = (\alpha_i)_i$, such that $\alpha(a) \downarrow b$ implies

$$\operatorname{tp}(b/C\alpha(a)) \models \operatorname{tp}(b/Ca),$$

for any tuple b.

We call a definable set *D* stable if every formula $\phi(x; y)$ with $y = (y_1, \ldots, y_m)$ such that $\phi \Rightarrow \bigwedge_{i \le m} D(y_i)$ is stable. This is often called *stable,stably embedded*. ??

A type over *C* is *stably dominated* if it is stably dominated over *C* via some α .

Definition 2.8.⁽⁸⁾ A partial type P is stably dominated over C if there exist C-definable maps $\alpha_i : P \to D_i$, D stable, $\alpha = (\alpha_i)_i$, such that $\alpha(a) \downarrow b$ implies

$$\operatorname{tp}(b/C\alpha(a)) \models \operatorname{tp}(b/Ca),$$

for any tuple b.

We call a definable set *D* stable if every formula $\phi(x; y)$ with $y = (y_1, \ldots, y_m)$ such that $\phi \Rightarrow \bigwedge_{i \le m} D(y_i)$ is stable. This is often called *stable,stably embedded*. ??

A type over *C* is *stably dominated* if it is stably dominated over *C* via some α .

Proposition 2.9.⁽⁸⁾ Let p be a complete type over $C = \operatorname{acl}(C)$. If p is stably dominated, it has a C-definable extension to \mathbb{U} , and this extension is unique.

Properties of stably dominated types

Most of these are proved in the previous paper, and so are not done here.

Proposition 2.10.⁽⁸⁾ Let p = tp(a/C) be stably dominated.

- 1. (Symmetry) If tp(b/C) is also stably dominated, $a \downarrow_C b$ iff $b \downarrow_C a$.
- 2. (Transitivity) $a \downarrow_C bd$ iff $a \downarrow_C b$ and $a \downarrow_{\operatorname{acl}(Cb)} d$.
- 3. (Base change) If $a \downarrow_C b$, then tp(a / acl(Cb)) is stably dominated.
- 4. If $\operatorname{tp}(d/C)$ and $\operatorname{tp}(b/\operatorname{acl}(Cd))$ are stably dominated, then so it $\operatorname{tp}(bd/C)$. Conversely, if $a \in \operatorname{dcl}(Cb)$ and $\operatorname{tp}(b/C)$ is stably dominated, so is $\operatorname{tp}(a/C)$.
- 5. For any formula $\phi(x, y)$, $(d_p x)(\phi)$ is a positive boolean combination of formulas $\phi(a_i, y)$, where $a_i \models p | (C \cup \bigcup_{j < i} \{a_j\})$.

Metastability

set

Let Γ be a sort of T which is stably embedded (every subset of Γ^n defined with parameters is definable with parameters in Γ) and orthogonal to the stable part of T (no infinite definable subset of Γ^{eq} is stable).

Definition 1.2.⁽³⁾ *T* is metastable (over Γ) if for any partial type *P* over a base C_0 there exists $C \supset C_0$ and a *-definable (over *C*) map $\gamma_C : P \to \Gamma$ with $\operatorname{tp}(a/\gamma_C(a))$ stably dominated.

Metastability

set

Let Γ be a sort of T which is stably embedded (every subset of Γ^n defined with parameters is definable with parameters in Γ) and orthogonal to the stable part of T (no infinite definable subset of Γ^{eq} is stable).

Definition 1.2.⁽³⁾ *T* is metastable (over Γ) if for any partial type *P* over a base C_0 there exists $C \supset C_0$ and a *-definable (over *C*) map $\gamma_C : P \to \Gamma$ with $\operatorname{tp}(a/\gamma_C(a))$ stably dominated.

In addition, we assume every type over an algebraically closed subset of a model of T^{eq} has an automorphism-invariant extension to the model. This assumption, which Hrushovski labels (E), may be removable.

Metastability

set

Let Γ be a sort of T which is stably embedded (every subset of Γ^n defined with parameters is definable with parameters in Γ) and orthogonal to the stable part of T (no infinite definable subset of Γ^{eq} is stable).

Definition 1.2.⁽³⁾ *T* is metastable (over Γ) if for any partial type *P* over a base C_0 there exists $C \supset C_0$ and a *-definable (over *C*) map $\gamma_C : P \to \Gamma$ with $\operatorname{tp}(a/\gamma_C(a))$ stably dominated.

In addition, we assume every type over an algebraically closed subset of a model of T^{eq} has an automorphism-invariant extension to the model. This assumption, which Hrushovski labels (E), may be removable.

We will say that *C* is a *good base for P*. A *good base* is a good base for all partial types over it.

Definition.⁽⁴⁾ We refer to the Morley rank of a stable formula as the (Morley) dimension.

The following conditions are known as (FD):

Definition.⁽⁴⁾ We refer to the Morley rank of a stable formula as the (Morley) dimension.

The following conditions are known as (FD):

1. Γ is o-minimal (in fact, it is usually assumed to be a pure group).

Definition.⁽⁴⁾ We refer to the Morley rank of a stable formula as the (Morley) dimension.

The following conditions are known as (FD):

- 1. Γ is o-minimal (in fact, it is usually assumed to be a pure group).
- 2. Morley dimension is definable in families: if D_t is a definable family of definable sets then $\{t \mid MR(D_t) = m\}$ is definable.

Definition.⁽⁴⁾ We refer to the Morley rank of a stable formula as the (Morley) dimension.

The following conditions are known as (FD):

- 1. Γ is o-minimal (in fact, it is usually assumed to be a pure group).
- 2. Morley dimension is definable in families: if D_t is a definable family of definable sets then $\{t \mid MR(D_t) = m\}$ is definable.
- 3. Let D be a definable set. The Morley dimension of f(D), where f ranges over all definable functions (with parameters) such that f(D) is stable, takes a maximum value $\dim_{st}(D)$. Similarly, the o-minimal dimension of g(D), where g ranges over all definable functions (with parameters) such that g(D) is Γ -internal, takes a maximum value $\dim_o(D)$.

Definition.⁽⁴⁾ We refer to the Morley rank of a stable formula as the (Morley) dimension.

The following conditions are known as (FD):

- 1. Γ is o-minimal (in fact, it is usually assumed to be a pure group).
- 2. Morley dimension is definable in families: if D_t is a definable family of definable sets then $\{t \mid MR(D_t) = m\}$ is definable.
- 3. Let D be a definable set. The Morley dimension of f(D), where f ranges over all definable functions (with parameters) such that f(D) is stable, takes a maximum value $\dim_{st}(D)$. Similarly, the o-minimal dimension of g(D), where g ranges over all definable functions (with parameters) such that g(D) is Γ -internal, takes a maximum value $\dim_o(D)$.

Definition.⁽⁴⁾ A definable set X is Γ -internal if $X \subseteq dcl(\Gamma, F)$ for some finite set F; equivalently for any $M \preceq M' \models T$, - $X(M') \subseteq dcl(M \cup \Gamma(M'))$.

Definition.⁽⁴⁾ We refer to the Morley rank of a stable formula as the (Morley) dimension.

The following conditions are known as (FD):

- 1. Γ is o-minimal (in fact, it is usually assumed to be a pure group).
- 2. Morley dimension is definable in families: if D_t is a definable family of definable sets then $\{t \mid MR(D_t) = m\}$ is definable.
- 3. Let D be a definable set. The Morley dimension of f(D), where f ranges over all definable functions (with parameters) such that f(D) is stable, takes a maximum value $\dim_{st}(D)$. Similarly, the o-minimal dimension of g(D), where g ranges over all definable functions (with parameters) such that g(D) is Γ -internal, takes a maximum value $\dim_o(D)$.

For the purposes of (FD), it is equivalent to ask that $g(D) \subseteq \Gamma^n$, since Γ eliminates imaginaries.

\textbf{FD}_{ω} and Remarks

An additional hypothesis often used is $FD_{\omega}^{(4)}$: Any set is contained in a good base M which is also a model. Moreover, for any acl-finitely generated $F \subseteq \Gamma$ and $F' \subseteq St_M$ over M, isolated types over $M \cup F \cup F'$ are dense.

\textbf{FD}_{ω} and Remarks

An additional hypothesis often used is $FD_{\omega}^{(4)}$: Any set is contained in a good base M which is also a model. Moreover, for any acl-finitely generated $F \subseteq \Gamma$ and $F' \subseteq St_M$ over M, isolated types over $M \cup F \cup F'$ are dense.

$Remarks^{(4)}$

1. Write

 $\dim_{st}^{def}(d/B) = \min\{\dim_{st}(D) \mid d \in D, D \text{ is } B\text{-definable}\}.$ If B' = B(d), then $\dim_{st}^{def}(B'/B) = \dim_{st}^{def}(d/B)$. Note that we may have $\dim_{st}^{def}(B'/B) > \dim St_B(B'/B)$.

\textbf{FD}_{ω} and Remarks

An additional hypothesis often used is $FD_{\omega}^{(4)}$: Any set is contained in a good base M which is also a model. Moreover, for any acl-finitely generated $F \subseteq \Gamma$ and $F' \subseteq St_M$ over M, isolated types over $M \cup F \cup F'$ are dense.

$Remarks^{(4)}$

- 1. Write
 - $\dim_{st}^{def}(d/B) = \min\{\dim_{st}(D) \mid d \in D, D \text{ is } B\text{-definable}\}.$ If B' = B(d), then $\dim_{st}^{def}(B'/B) = \dim_{st}^{def}(d/B)$. Note that we may have $\dim_{st}^{def}(B'/B) > \dim St_B(B'/B)$.
- 2. (FD $_{\omega}$) is true for ACVF, with all imaginary sorts included. (FD) is true for all *C*-minimal expansions of ACVF.

Strong Germs

Proposition 2.13.⁽⁸⁾ (The strong germ lemma). Let p be stably dominated. Assume p as well as the p-germ of f(x, b) are defined over $C = \operatorname{acl}(C)$. Then there exists a C-definable function g with the same p-germ as f(x, b).

Strong Germs

Proposition 2.13.⁽⁸⁾ (The strong germ lemma). Let p be stably dominated. Assume p as well as the p-germ of f(x, b) are defined over $C = \operatorname{acl}(C)$. Then there exists a C-definable function g with the same p-germ as f(x, b).

Proposition 2.14.⁽⁸⁾ A definable type p is stably dominated iff for any definable function g on p with codomain Γ , the p-germ of g is constant.

Strong Germs

Proposition 2.13.⁽⁸⁾ (The strong germ lemma). Let p be stably dominated. Assume p as well as the p-germ of f(x, b) are defined over $C = \operatorname{acl}(C)$. Then there exists a C-definable function g with the same p-germ as f(x, b).

Proposition 2.14.⁽⁸⁾ A definable type p is stably dominated iff for any definable function g on p with codomain Γ , the p-germ of g is constant. Write g(p) for the constant value of the p-germ. The property of p is referred to as orthogonality of p to Γ . Note that this is strictly weaker than orthogonality of D to Γ for some definable $D \in p$.

Descent, Question and Answer

Proposition 2.11.⁽⁸⁾ (Descent) Let p, q be $Aut(\mathbb{U}/C)$ -invariant *-types. Assume that whenever $b \models q | C$, the type p | Cb is stably dominated. Then p is stably dominated.

Descent, Question and Answer

Proposition 2.11.⁽⁸⁾ (Descent) Let p, q be $Aut(\mathbb{U}/C)$ -invariant *-types. Assume that whenever $b \models q \mid C$, the type $p \mid Cb$ is stably dominated. Then p is stably dominated.

Question 2.12.⁽⁸⁾ Can the descent lemma be proved without the additional hypothesis (E) (that invariant extensions always exist)? Does (E) follow from metastability over an o-minimal Γ ?

Descent, Question and Answer

Proposition 2.11.⁽⁸⁾ (Descent) Let p, q be $Aut(\mathbb{U}/C)$ -invariant *-types. Assume that whenever $b \models q \mid C$, the type $p \mid Cb$ is stably dominated. Then p is stably dominated.

Question 2.12.⁽⁸⁾ Can the descent lemma be proved without the additional hypothesis (E) (that invariant extensions always exist)? Does (E) follow from metastability over an o-minimal Γ ?

The answer to the second question is yes.

Proof of Answer

at m

Let p be any type over C_0 , some set. We wish to show that p can be extended to an automorphism-invariant type over \mathbb{U} . Expand C_0 to a good base for p, C, and let γ_C and α be the maps guaranteed to us by metastability. We have a "decomposition" of p into two types: given $a \models p$, we have $\gamma_C(a)$, and we have $\alpha(a)$. Note that since $\alpha(a)$ is in some stable, stably embedded D, $tp(\alpha(a))$ has an invariant extension. As well, $tp(\gamma_C(a)/\alpha(a))$ has an invariant extension: Γ is stably embedded, so we need only extend the type to one over Γ . O-minimal types are categorizable as cuts or noncuts. Each has a simple extreme extension. Thus, $tp(\alpha(a), \gamma_C(a))$ has an automorphism-invariant extension.

Proof of Answer

Now, consider $q(x, y, z) = \operatorname{tp}((\alpha(a), \gamma_C(a), a)/C)$. Let q' be the extension of q induced by the automorphism-invariant extension of $\operatorname{tp}(\alpha(a), \gamma_C(a))$. I claim that q' is a complete type, and is automorphism-invariant. This is because for any parameter, \overline{b} , q implies that $\operatorname{tp}(z/\overline{b}) \subset q'$ is implied by $\operatorname{tp}(xy/\overline{b})$, showing that q' is complete, and, since $\operatorname{tp}(xy/\mathbb{U})$ is automorphism-invariant, so is $\operatorname{tp}(z/\mathbb{U})$, finishing the proof.