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2.1.1. By exhibiting suitable formulas, show that the set of even numbers is a Σ0
0 set in N. Show the

same for the set of prime numbers.

∃y < x (2y = x). ∀y < x (y = 1 ∨ ∀z < x (yz 6= x)).

2.1.2. Let A be the partial ordering (in a signature with ≤) whose elements are the positive integers,

with m ≤A n iff m divides n. (a) Show that the set {1} and the set of primes are both ∅-definable in

A. (b) A number n is square-free if there is no prime p such that p2 divides n. Show that the set of

square-free numbers is ∅-definable in A.

(a) ∀y (y ≤ x). ∀y (y ≤ x→ y = 1 ∨ y = x).

(b) Define the squares of primes by ∀y (y ≤ x→ y = 1 ∨ y = x ∨ prime (y))∧¬prime (x). Then the

set of square-free numbers is ∀y (y ≤ x→ ¬primesquared (y)).

2.1.3. Let A be the graph whose vertices are all the sets {m,n} of exactly two natural numbers, with

a joined to b iff a ∩ b 6= ∅, a 6= b. Show that A is not minimal, but it has infinitely many minimal

subsets.

Fixing any a, both the sets R (x, a) and ¬R (x, a) are infinite. However, if a = {m,n}, b = {m, k},

and c = {m, l}, then the set R (x, a) ∧ R (x, b) ∧ R (x, c) is minimal, since given any formula θ
(

x, d̄
)

whose intersection with this set is infinite and co-infinite, we can find an automorphism of A which

fixes m and d̄, but moves elements in θ
(

x, d̄
)

out of it, and vice versa, which is impossible, since

automorphisms preserve formulas.

2.1.4. Let A be a linear ordering with the order type of the rationals. Show that A is O-minimal.

This is trivial with quantifier elimination on dense linear orders without endpoints. Otherwise, given

a formula ϕ (x, ā) defining some set in A, we can find an automorphism of A which fixes ā pointwise

and moves other points arbitrarily, subject to the constraint that if ai < x < aj , then ai < fx < aj .

This shows that if Y has a point in the interval (ai, aj), then in fact it contains that interval. Thus, Y

is a finite union of intervals along with zero or more of the ai’s.

2.1.5. Let A be an infinite-dimensional vector space over a finite field. Show that A is minimal, and

that the only ∅-definable sets are ∅, {0}, and dom (A).

Let X be any set which is infinite and co-infinite, defined by ϕ (x, ā). X and XC must both have

elements in infinitely many dimensions. By considering the automorphism which takes every dimension

which does not intersect ā and multiplies it by λ, for λ in the finite field, we know that if there is an

element of X in some dimension, then X contains that dimension entirely, and likewise for XC . Thus,
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there are at least two dimensions disjoint from ā, such that the first is entirely in X and the second

entirely in XC . Taking an automorphism fixing ā and mapping the first dimension to the second, we

see that this is nonsense.

The three above sets are clearly ∅-definable, along with dom (A) \ {0}. Since given any a and b

non-zero there is always an automorphism taking a to b, these must be all of the ∅-definable sets.

2.1.6. (Time-sharing with formulas). Let x̄ be a k-tuple of variables and let φi (x̄, ȳ) (i < n) be

formulas of a first-order language L. Show that there is a formula ψ (x̄, ȳ, w̄) of L such that for every

L-structure A with at least two elements, and every tuple ā in A, the set of all relations of the form

ψ
(

Ak, ā, b̄
)

with b̄ in A is exactly the set of all relations of the form φi

(

Ak, ā
)

, with i < n.

Let w̄ = (w0, . . . , wn). Let ψ
(

Ak, x̄, ȳw̄
)

be




∨

i<n

wn = wi ∧
∧

j<n,j 6=i

wn 6= wj ∧ φi (x̄, ȳ)



 ∨

(

∧

i<n

wn 6= wi ∧ φ0 (x̄, ȳ)

)

.

2.1.7. Show that if L is a first-order language then |L| is equal to ω+ (the number of symbols in the

signature of L).

If |L| is countable, the formulas ∃=nx (x = x) are all non-equivalent, so we are done. If L is

uncountable, then the formulas R (x̄), f (x̄) = y, and x = c, for all of its symbols, are all non-equivalent

and there are |L| = ω + |L| of them.

2.1.8. Prove Lemma 2.1.1 for formulas of L∞ω with finitely many free variables, by induction on the

complexity of the formulas.

We show Lemma 2.1.1 where Y may be a relation on tuples of A. For an atomic formula, we have

R (t̄ (x̄, ā)) iff x̄ ∈ Y , for t̄ some term of L (R can be “=”). Then if an automorphism, f , fixes ā, since

automorphisms preserve functions, constants, and relations, t̄ is the result of functions and constants,

and R is a relation, we have R (t̄ (x̄, ā)) iff x̄ ∈ fY , so f fixes Y setwise. That takes care of the base

case. Let ϕ (x̄, ā) define Y . We must show that any automorphism of A fixing ā pointwise fixes Y

setwise. Suppose ϕ (x̄, ā) =
∧

i<γ ψi (x̄, ā). Then by induction, the set defined by each ψi is fixed by

the automorphism, and thus the intersection is fixed. Likewise for
∨

and the union. If ϕ = ¬ψ, since

the set defined by ψ is fixed, the complement is also fixed. If ϕ = ∃yψ (x̄, y, ā), then by induction, the

set defined by ψ (x, y, ā) is fixed by this automorphism. Thus, if
(

b̄, c
)

is in this set, its image,
(

d̄, e
)

is

also in this set. Thus, if ∃yψ
(

b̄, y, ā
)

, then ∃yψ
(

f b̄, y, ā
)

. The same is true for ∀.

2.1.9. Let L be the signature of abelian groups and p a prime. Let A be the direct sum of infinitely

many copies of Z
(

p2
)

, the cyclic group of order p2. Show (a) the subgroup of elements of order ≤ p is

∅-definable and minimal, (b) the set of elements of order p2 is ∅-definable but not minimal.

(a) The set is defined by x + x + . . . + x = 0 (p copies of x). Note that this set corresponds to

elements which have at least one coordinate equal to p, and all coordinates either p or 0. Suppose it
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is not minimal, say with an infinite co-infinite set, Y , defined by ϕ (x, ā). Each ai ∈ ā partitions ω

into p2 classes – the k-th coordinate of ai determines the class of k. Thus, taking the intersection of

these finitely many classes, we break ω up into some finite number of classes, say n, such that any

mapping of the coordinates respecting those classes fixes ā. Now, let y1 ∈ Y and y2 ∈ Y C be such

that on each class, y1 is not identically 0 or p on each coordinate, and y2 is not identically 0 or p on

each coordinate. This is possible because there are only finitely many possibilities, and both Y and

Y C are infinite. Then there is an automorphism of each class (the identity on the rest) which takes

the element which is 1 on the coordinates where y1 is p, and 0 otherwise, and maps it to the element

which is 1 on the coordinates where y2 is p, and 0 otherwise. This automorphism can be made to fix

ā. Then the composition of all these automorphisms takes y1 to y2 and fixes ā, which is impossible.

(b) The set is defined by
∧

n<p2 nx 6= 0. It is not minimal since if we fix some a ∈ A, we can

consider all elements which are expressible as a+ a term of order ≤ p. Since there are infinitely many

such terms, this set is infinite, but it is also co-infinite, since x−a will have order p2 for infinitely many

x.

2.1.10. Let G be a group, and let us call a subgroup H definable if H is first-order definable in G

with parameters. Suppose that G satisfies the descending chain condition on definable groups of finite

index in G. Show that there is a unique smallest definable subgroup of finite index in G. Show that

this subgroup is in fact ∅-definable, and deduce that it is a characteristic subgroup of G.

Suppose there is no unique smallest definable subgroup of finite index in G. Considering the

partial ordering of subgroups of G (ordered under reverse inclusion), by Zorn’s lemma coupled with

the descending chain condition, there is a smallest definable subgroup of finite index in G, H . We show

that H is unique. Suppose not. Then there is some H ′ with |H | = |H ′| and H ′ a definable subgroup of

finite index not equal to H . Then H ∩H ′ contradicts the minimality of H and H ′, as the intersection

of two subgroups of finite index has finite index.

Let ϕ (x, ā) define H . Let ψ (x, ȳ) be the formula ϕ (x, ȳ) along with the statement “ϕ (x, ȳ) defines

a group of index [G : H ].” This is first-order since H has finite index in G. Then ψ (x, ȳ) must define

H or ∅ for all ȳ, since otherwise we would get a different group of minimal index, and could intersect it

with H . Then we can define H by ∃ȳϕ (x, ȳ). Thus every automorphism fixes H , so it is a characteristic

subgroup.

2.2.1. Let L be a first-order language and T a theory in L. Show: (a) if T and U are theories in L

then T ⊆ U implies Mod (U) ⊆ Mod (T ), (b) if J and K are classes of L-structures then J ⊆ K implies

Th (K) ⊆ Th (J), (c) T ⊆ Th (Mod (T )) and K ⊆ Mod (Th (K)), (d) Th (Mod (T )) = T if and only if

T is of the form Th (K), and likewise Mod (Th (K)) = K if and only if K is of the form Mod (T ).

Let A be any model in Mod (U). Then A |= U , so A |= T , so A is in Mod (T ). Let ϕ be any sentence

in Th (K). Then ϕ is true in every model of K, hence every model of J, hence ϕ ∈ Th (J). Let ϕ be
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any sentence of T . Then for any A |= T , A |= ϕ, so ϕ ∈ Th (Mod (T )). Let A be any model of K. Then

A |= Th (K), so A ∈ Mod (Th (K)). Suppose T = Th (Mod (T )). Then let K = Mod (T ). Suppose

T = Th (K). Then Mod (T ) ⊇ K, so Th (K) ⊇ Th (Mod (T )), so T ⊇ Th (Mod (T )), but the reverse

inclusion holds from above. Suppose Mod (Th (K)) = K. Then let T = Th (K) and K = Mod (T ).

Conversely, if K = Mod (T ), then Th (K) ⊇ T , so Mod (Th (K)) ⊆ Mod (T ) = K, and the reverse

inclusion holds from above.

2.2.2. Let L be a first-order language and for each i ∈ I let Ki be a class of L-structures. Show that

Th
(
⋃

i∈I Ki

)

=
⋂

i∈I Th (Ki).

Let the theories be T and U . Suppose ϕ ∈ T . Then ϕ holds in every model of every Ki. Thus, it

is in U . The reverse is the same.

2.2.3. Let L be a first-order language and for each i ∈ I let Ti be a theory in L. (a) Show that

Mod
(
⋃

i∈I Ti

)

=
⋂

Mod (Ti). In particular if T is any theory in L, Mod (T ) =
⋂

φ∈T Mod (φ). (b)

Show that the statement Mod
(
⋂

i∈I Ti

)

=
⋃

i∈I Mod (Ti) holds when I is finite and each Ti is of the

form Th (Ki) for some class Ki.

Let K and J be the classes of models. If A ∈ K, then A |= Ti for each i, so A ∈ J. The reverse

is similar. For (b), let K and J be the classes of models. If A ∈ J, then clearly A |=
⋂

i∈I Ti, since

A |= Ti for some i, so A ∈ K. Now let A ∈ K. Suppose A is not in Mod (Ti) for any i. Let ϕ0 be a

sentence such that T0 ⊢ ϕ but A |= ¬ϕ. Then for some Ti1 , Ti1 does not prove ϕ. Let ϕ1 be a sentence

in Ti1 such that A |= ¬ϕ1. Then find Ti2 such that T does not prove ϕ2. Continuing this process, we

will get ϕ0, . . . , ϕn such that A |= ¬ϕi, for each i ≤ n, but every theory Tj proves one of them. Then
∨

i≤n ϕi is in Tj for every j ∈ I, but false in A, which is impossible. Thus, A ∈ J.

2.2.4. Let L be any signature containing a 1-ary relation symbol P and a k-ary relation symbol R.

(a) Write down a sentence of Lω1ω expressing that at most finitely many elements x have the property

P (x). (b) When n < ω, write down a sentence of Lωω expressing that at least n k-tuples x̄ of elements

have the property R (x̄).
∨

i<ω ∀x0 . . . xi−1

(

∧

j<i P (xj) →
∨

j<k<i xi = xj

)

. Let x̄ (j) be the j-th component of x̄ (j < n).

∃x̄0, . . . , x̄n−1

(

∧

i<k<n

∨

j<n x̄i (j) 6= x̄k (j) ∧
∧

i<n R (x̄i)
)

.

2.2.5. Let L be a first-order language an A a finite L-structure. Show that every model of Th (A) is

isomorphic to A.

Th (A) certainly gives how many elements A has, so any model, B, has |B| = |A|. Let n = |A|.

There are thus n! maps to consider. We can fix ā = (a0, . . . , an−1), and just consider orderings of B,

as (b0, . . . , bn−1), with the mapping bi → ai. Take a random such ordering. If it is an isomorphism,

we are done. Otherwise, there is some atomic formula, which we can assume to be of the form R0 (x̄),

with B |= R0

(

b̄
)

but A |= ¬R0 (ā), or vice versa. Since A |= ∃x̄
(
∧

i<n xi 6= xj ∧ ¬R0 (x̄)
)

, we can
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restrict to orderings of B which witness this sentence. Take a new ordering witnessing this sentence

and repeat. After at most n! tries, we will have A |= ∃x̄
(
∧

i<n xi 6= xj ∧
∧

i<n! ¬Ri (x̄)
)

, but then B

cannot satisfy this sentence, and so was not a model of Th (A) to begin with.

2.2.6. For each of the following classes, show that it can be defined by a single first-order sentence.

(a) Nilpotent groups of class k (k ≥ 1). (b) Commutative rings with identity. (c) Integral domains.

(d) Commutative local rings. (e) Ordered fields. (f) Distributive lattices.

(a) The group axioms can obviously be written as a single sentence. The group Ci is defined to

be ∀y∃c (c ∈ Ci−1 ∧ xy = yxc), with C0 ∀z (xz = zx). Then each Ci is definable, so the group axioms

together with ∀x (x ∈ Ck) is a first-order sentence.

(b) Conjunct together the ring axioms together with ∀xy (xy = yx).

(c) Conjunct together the commutative rings with identity axioms along with ∀xy (xy = 0 → y = 0 ∨ x = 0).

(d) Conjunct together the commutative rings with identity axioms along with the axiom

∀xyz (¬∃w (wx = 1 ∨ wy = 1) → (¬∃w (w (x+ y) = 1) ∧ ¬∃w (zx = 1))), saying that the set of non-

units forms an ideal.

(e) Conjunct together the field axioms together with the linear order axioms together with

∀xyz (y < z → y + x < z + x) and ∀xyz (x > 0 ∧ y < z → x · y < x · z).

(f) Conjunct together the axioms for lattices, together with ∀xyzw (x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)).

2.2.7. For each of the following classes, show that it can be defined by a set of first-order sentences.

(a) Divisible abelian groups. (b) Fields of characteristic 0. (c) Formally real fields. (d) Separably

closed fields.

∀x∃y (ny = x), for all n > 0. n 6= 0, for all n > 0. ∀x0 . . . xn−1

(
∑

i<n x
2
i 6= −1

)

, for all n > 0. We

can say that in every algebraic extension, some element in the extension has a minimal polynomial of

degree d such that for any algebraic extension of degree ≤ d!, there are not d roots of this polynomial

– see Exercise 4.3.8, which shows how to define an algebraic extension, how to define the minimal

polynomial of an element in such an extension, and how to say that there are m roots of a polynomial

in an extension, for any m.

2.2.8. Show that the class of simple groups is definable by a sentence of Lω1ω.

The sentence is the conjunction of the theory of groups together with ∀x∀y
∨

i<ω ∃z0 . . . zi−1

(

y = Πi<nzixz
−1
i

)

.

2.2.9. Let L be a signature with a symbol <, and T the theory in L which expresses that < is a linear

ordering. (a) Define, by induction on the ordinal α, a formula θα (x) of L∞ω which expresses (in any

model of T ) ‘The order-type of the set of predecessors of x is α’. (b) Write down a set of axioms in

L∞ω for the class of orderings of order-type α. Check that if α is infinite and of cardinality κ, your

axioms can be written as a single sentence of Lκ+ω.
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(a) Define θ0 (x) by ¬∃y (y < x). Given the formulas θβ (x) for β < α, define θα (x) by ∀y <

x
∨

i<α θi (y) ∧ ∀yz < x
∧

i<α θi (y) ∧ θi (z) → y = z.

(b) The set of axioms is ∃xθβ (x), for β < α, and ¬∃xθα (x), along with the axioms for a linear

order. The above sentences can be rewritten as ∀x
∨

i<α θi (x), which is a sentence of Lκ+ω, since there

are κ-many disjunctions in it.

2.3.1. Show that a theory T in a first-order language L is closed under taking consequences if and

only if T = Th (Mod (T )).

If T is closed under taking consequences, let ϕ be any sentence in Th (Mod (T )). Since every A |= T

has A |= ϕ, ϕ is a consequence of T . Thus, ϕ ∈ T . The inclusion the other way is trivial. Conversely,

if T = Th (Mod (T )), since Th () is closed under taking consequences, so is T .

2.3.2. Let T be the theory of vector spaces over a field K. Show that T is λ-categorical whenever λ

is an infinite cardinal > |K|.

We construct an isomorphism from A to B, where A and B are K-vector spaces with cardinality

λ. We use a back-and-forth game. Suppose we have
(

ā, b̄
)

chosen so far, with (A, ā) ≡0

(

B, b̄
)

. The

case when ā has length 0 is trivial. Let ∀ choose c in A. If c =
∑

i<n kiai with ki ∈ K, then set

d =
∑

i<n kibi. By 0-equivalence, āc and b̄d satisfy all the same quantifier-free formulas. If c is not

such a sum, then choose d so that it is not any sum of the bi’s. This is possible since there are

|K|n < max (K,ω) many possible sums, but λ ≥ (|K|, ω) possible elements to choose from. Then it is

easy to verify that āc and b̄d satisfy the same quantifier-free formulas (pretty much the same ones that

ā and b̄ satisfied). This procedure can continue for λ many steps, at which point we have constructed

an isomorphism between A and B.

2.3.3. Let N be the natural number structure (ω, 0, 1,+, ·, <); let its signature be L. Write a sentence

of Lω1ω whose models are precisely the structures isomorphic to N.

∀xy
∨

i,j<w x = i ∧ y = j ∧ (x < y ↔ i < j) ∧ x+ y = i+ j ∧ xy = ij.

2.3.4. Prove the lemma on constants (Lemma 2.3.2).

We must show that if T ⊢ φ (c̄) then T ⊢ ∀x̄φ (x̄), where c̄ is a tuple of constants not appearing

in T . Let A |= T be any model of T . Make A into a model of L ∪ {c̄} by assigning c̄ to elements of

A arbitrarily. Then, since T ⊢ ϕ (c̄), A |= ϕ (c̄). Since this is true for any assignment, A |= ∀x̄ϕ (x̄).

Then since A was arbitrary, ∀x̄ϕ (x̄) is a consequence of T .

2.3.5. Show that if L is a first-order language with finitely many relations, functions and constant

symbols, then there is an algorithm to determine, for any finite set T of quantifier-free sentences of L,

whether or not T has a model.

T can be written as a single sentence, and hence as a disjunction of conjunctions of closed literals.

We then need to check each conjunction, so we may reduce to the case that T is a single conjunction
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of closed literals. By Exercises 1.5.2 and 1.5.3, T has a model iff whenever ¬φ is a negated atomic

sentence of T , then φ is not in the =-closure of the set of atomic sentences in T . It is then a simple

matter to start constructing the =-closure, and stopping when we have enumerated all sentences of

complexity at most φ, of which there are finitely many. If φ appears in this list, then T has no model,

and otherwise, it does.

2.3.6. For each n < ω let Ln be a signature and Φn a Hintikka set for Ln. Suppose that for all

m < n < ω, Lm ⊆ Ln and Φm ⊆ Φn. Show that
⋃

n<ω Φn is a Hintikka set for the signature
⋃

n<ω Ln.

All conditions (3.1-8) of Hintikka sets are clearly preserved under unions.

2.3.7. Let L be a first-order language. (a) Show that if there is an empty L-structure A and φ is

a prenex sentence which is true in A, then φ begins with a universal quantifier. (b) Show (without

assuming that every structure is non-empty) that every formula φ (x̄) of L is logically equivalent to a

prenex formula ψ (x̄) of L. (c) Sometimes it is convenient to allow l to contain 0-ary relation symboles

(i.e. sentence letters) p; we interpret them so that for each L-structureA, pA is either truth or falsehood,

and in the definition of |= we put A |= p⇔ pA = truth. Show that in such a language L there can be

a sentence which is not logically equivalent to a prenex sentence.

(a) By the definition of |=, if φ began with an existential quantifier, say was ∃xθ (x), then A |= φ

would mean that for some a ∈ A, A |= θ (a), but there is no such a, so this is impossible.

(b) We wish to give a formula φ∗ (x̄) which is prenex and such that in every model A with signature

L and elements ā from that model, A |= φ (ā) ⇔ A |= φ∗ (ā). Since if x̄ is not empty, A cannot be

empty, the usual procedure works. If x̄ is empty, then let φ∗ be the usual prenex form. Let φ′ be as

follows. Let θ (x̄) be the quantifier-free formula in φ∗. Let θ′ (x̄, y) be θ (x̄) ∨ (y 6= y). Now replace θ

in φ∗ with θ′. If A |= φ, then prepend ∀y to φ∗ to get φ′. If A |= ¬φ, then prepend ∃y. Then φ′ is in

prenex normal form and agrees with φ on all models.

(c) Let ϕ be the formula p ↔ ∀x (R (x)), with L having a unary relation R. Let A be an empty

model with A |= p and B be an empty model with B |= ¬p. Then ϕ is true in A and false in B. Since

a prenex sentence in an empty model is (by definition) true iff it begins with a universal quantifier, if

ϕ has a prenex form, it is quantifier-free. But clearly for any quantifier-free sentence of L, there are

models of L where ϕ is not equivalent to that sentence. Thus, ϕ cannot be put in prenex normal form.

2.3.8*. Let L be a first-order language. An L-structure A is said to be locally finite if every finitely

generated substructure of A is finite. (a) Show that there is a set Ω of quantifier-free types such that

for every L-structure A, A is locally finite if and only if A omits every type in Ω. (b) Show that if L

has finite signature, then we can choose the set Ω in (a) to consist of a single type.

(a) Ω consists of all types p (x̄), where x̄ is an n-tuple and p contains formulas of the form
∧

i<j<n ti (x̄) 6= tj (x̄) for ti, tj terms of L and arbitrarily large n.
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(b) This statement is plainly incorrect, since we must have an n-type for each n, so assume it

is one type per n-tuple. Let Si (x̄) be the set of all terms of x with complexity level at most

i. Note that for each i, Si is finite. We let p (x̄) be as follows. p contains formulas of the form
∨

t∈Sn\Sn−1

∧

s∈Sn−1
s (x̄) 6= t (x̄), for n < ω.

2.4.1. Let L be a first-order language. (a) Suppose φ is an ∀1 sentence of L and A is an L-structures.

Show that A |= φ if and only if B |= φ for every finitely generated substructure B of A. (b) Show that

if A and B are L-structures, and every finitely generated substructure of A is embeddable in B, then

every ∀1 sentence of L which is true in B is true in A also.

(a) One direction is by Corollary 2.4.2.(a). In the other, suppose that A |= ¬φ. Letting φ be

∀x̄θ (x̄) with θ quantifier-free, this means that for some tuple ā in A, A |= ¬θ (ā). Then let B = 〈ā〉A,

so B |= ¬θ (ā), so B |= ¬φ.

(b) Let φ be any ∀1 sentence. Suppose A |= ¬φ. Then by (a) we can find C a finitely generated

substructure of A such that C |= ¬φ. Thus, using the above notation, C |= ¬θ (ā). We can embed C

in B, say by f , so fC |= ¬θ (fā). Then B |= ¬θ (fā), since θ is quantifier-free, so B |= ¬φ.

2.4.2. Suppose the first-order language L has just finitely many relation symbols and constants, and

no function symbols. Show that if A and B are L-structures such that every ∀1 sentence of L which is

true in B is true in A too, then every finitely generated substructure of A is embeddable in B.

Let C be any finitely generated substructure of A. Then C is finite. diag (C) is a quantifier-free

sentence in L (A), since there are no terms. Let it be ψ (c̄). Then A |= ∃x̄ψ (x̄), and so B does too.

Letting b̄ be the realization in B of x̄, C embeds onto b̄.

2.4.3. Let L be a first-order language and T a theory in L, such that every ∀1 formula φ (x̄) of L is

equivalent modulo T to an ∃1 formula ψ (x̄). Show that every formula φ (x̄) of L is equivalent modulo

T to an ∃1 formula ψ (x̄).

We can assume φ is in prenex normal form, sayQ1x̄1 . . . Qnx̄nθ (x̄1, . . . , x̄n), with eachQi either ∀ or

∃ (alternating), and θ quantifier-free. Go by induction on n. IfQn is ∀, thenQnxnθ (x̄1, . . . , x̄n) is equiv-

alent to an ∃1 formula, by assumption. Then ∃x̄n−1∀x̄nθ (x̄1, . . . , x̄n) is equivalent to ∃x̄n−1∃ȳθ∗ (x̄1, . . . , x̄n−1, ȳ),

which is equivalent to ∃x̄n−1ȳθ
∗ (x̄1, . . . , x̄n, ȳ) for some quantifier-free θ∗. Then φ is equivalent to a for-

mula with n−1 quantifiers, and thus equivalent to an ∃1 formula by induction. If Qn is ∃, then consider

¬∃x̄n (θ (x̄1, . . . , x̄n)) = ∀x̄n¬θ (x̄1, . . . , x̄n). Since this is ∀1, it is equivalent to ∃ȳ¬θ∗ (x̄1, . . . , x̄n−1, ȳ),

for some quantifier-free θ∗. Thus its negation is equivalent to ∀ȳθ∗ (x̄1, . . . , x̄n−1, ȳ). Then ∀x̄n−1∃x̄θ (x̄1, . . . , x̄n)

is equivalent to ∀x̄n−1ȳθ
∗ (x̄1, . . . , x̄n−1, ȳ), and so φ is equivalent to a formula with n− 1 quantifiers,

and thus equivalent to an ∃1 formula by induction.

2.4.4. In section 2.2 above there are axiomatisations of several important classes of structure. Show

that, using the signatures given in section 2.2, it is not possible to write down sets of axioms of the
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following forms: (a) a set of ∃1 axioms for the class of groups. (b) a set of ∀1 axioms for the class

of atomless boolean algebras; (c) a single ∃2 first-order axiom for the class of dense linear orderings

without endpoints.

(a) Since ∃1 sentences are preserved in embeddings, take any group G and adjoin an element 0 with

the property that g · 0 = 0 for all g ∈ G. Then 0 has no inverse, so this structure is not a group.

(b) Since ∀1 sentences are preserved in substructures, take the substructure of just 1 and 0 of any

atomless boolean algebra. Then this structure is not an atomless boolean algebra, since 1 is an atom.

(c) Let ∃x̄∀ȳθ (x̄, ȳ) be an axiom. Let A be any dense linear order without endpoints. Then we

can find ā in A such that A |= ∀ȳθ (ā, ȳ). Since ∀1 formulas are preserved in substructures, take the

substructure B = 〈ā〉A, which is just ā. Then B |= ∀ȳθ (x̄, ȳ), but B is not a dense linear ordering

without endpoints.

2.4.5. Let L be as above [with a 2-ary relation symbol <]. A Π0
0 formula is one in which all quantifiers

are bounded. A Σ0
1 formula is a formula in the smallest class of formulas which contains the Π0

0

formulas and is closed under
∧

,
∨

and existential quantification. Show that end-embeddings preserve

Σ0
1 formulas.

Let ϕ be a Σ0
1 formula, A ⊆ B an end-embedding, and suppose A |= ϕ (ā). Go by induction on

the complexity of ϕ. Quantifier-free formulas pose no difficulty, neither do negations, conjunctions or

disjunctions. We are left with the bounded universal and existential quantifiers. First assume that ϕ

is of the form ∃xθ (x, ȳ), for θ Σ0
0, and θ preserved under end-embeddings. Thus, A |= θ (c, ā), for some

c ∈ A, so B |= θ (c, ā). Now assume that ϕ is ∀x < t (ȳ) θ (x, ȳ), with θ Π0
0 and t some term of L.

Suppose B |= ¬ϕ (ā). Then B |= ∃x < t (ā)¬θ (x, ā). But t (ā) is in A, so the witness for x must be

in A, so B |= ¬θ (ā, c), for some c ∈ A. But A |= θ (ā, c), since c < t (ā) and A |= ∀x < t (ā) θ (ā, x).

Contradiction by induction.

2.4.6. Let L be a signature containing a 1-ary symbol P . By a P -embedding we mean an embedding

e : A → B, where A and B are L-structures, such that e maps PA onto PB. Let Φ be the smallest

class of formulas of L∞ω such that (i) every quantifier-free formula is in Φ, (ii) Φ is closed under
∧

and
∨

, (iii) if φ is in Φ and x is a variable then ∃xφ and ∀x (Px→ φ) are in Φ. Show that every

P -embedding preserves ll the formulas in Φ.

Go by induction on complexity. Quantifier-free formulas, conjunctions, and disjunctions pose no

problems. If we have ∃xφ (x, ȳ), and A |= ∃xφ (x, ā), then A |= φ (c, ā) for some c ∈ A, so B |= φ (c, ā)

by induction, and so B |= ∃xφ (ā). If we have ∀x (Px→ φ), and A |= ∀x (Px→ φ (x, ā)), let b be any

element of PB. Let c be the preimage of b under e. Then A |= φ (c, ā), so by inductions, B |= (b, ā).

Thus, B |= ∀x (Px→ φ).

2.4.7. Show that if (Ai | i < γ) is a descending chain of L-structures, then there is a unique L-structure

B which is a substructure of each Aj and has domain
⋂

i<γ dom(Ai).
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We must show that any L-structures B and B′ with domain
⋂

i<γ dom(Ai) which are substructures

of each Ai are equal. But in B (and B′), f (ā) = b iff in all Ai, f (ā) = b, and likewise for relations and

constants. Thus, B and B′ have the same universe and the same interpretations of functions, relations,

and constants. They are then equal.

2.4.8. (a) Show that, if φ is a formula of L∞ω of the form ∀x̄∃=nyψ (x̄, y, z̄), where ψ is quantifier-free,

then φ is preserved in intersections of descending chains of L-structures. (b) Write a set of first-order

axioms of this form for the class of real-closed fields. (c) Can axioms of this form be found for the class

of dense linear orderings without endpoints?

(a) Suppose not. Let B be the intersection of the descending chain of 〈Ai | i < γ〉. Then for some

ā, b̄ in B, we have ¬∃=nyψ
(

ā, y, b̄
)

, but Ai |= ∀x̄∃=nyψ
(

x̄, y, b̄
)

. Then each Ai has exactly n witnesses

for ∃=nψ
(

ā, y, b̄
)

, which must then be all the same. Let them be c1, . . . , cn. Then Ai |= ψ
(

ā, cj, b̄
)

, for

all i < γ, j ≤ n. Since quantifier-free formulas hold in substructures, B |= ψ
(

ā, cj, b̄
)

, so B must have

an additional witness, d. Then B |= ψ
(

ā, d, b̄
)

, but then Ai |= ψ
(

ā, d, b̄
)

, which is impossible.

(b) Modify the given theory of real-closed fields to say ∀x∃=2y
(

x = y2 ∨ −x = y2
)

. As well, through

a great deal of work, it can be shown that the set {(x0, . . . , xn−1) | yn+xn−1y
n−1+. . .+x0 has e zeros}

is quantifier-free definable from (x0, . . . , xn−1). Then, letting Ze (x0, . . . , xn−1) be the formula express-

ing this, we have

∀x0 . . . xn−1∃=ny





∨

0<i≤n

Zi (x0, . . . , xn−1) →



yn + xn−1y
n−1 + . . .+ x0 = 0 ∨

∨

j<n−i

y = j +
∑

k<n

(j + 1 + xk)
2







 ,

saying that if there are i zeros, then y is either a zero or one of n− i fixed reals which cannot be zeros

of the polynomial because they are too big.

(c) No, because given any existential witness which is not equal to any other element in the formula,

we can find infinitely many such witnesses. Thus, in dense linear orderings, every such statement must

have ψ containing a statement of the form xi = y or wi = y, so we have ∃=1y and in fact y can be

eliminated, and the statement rewritten as ∀1, and we know dense linear orderings are not preserved

under substructures.

2.4.9. Let L be a signature and Φ the smallest class of formulas of L∞ω such that (1) all literals of L

are in Φ, (2) Φ is closed under
∧

and
∨

, and (3) if φ (x, ȳ) is any formula in Φ, then so are the formulas

∀xφ and ∃z∀x (z < x→ φ). Show that every formula in Φ is preserved under cofinal substructures.

Go by induction on complexity. Literals, conjunctions, and disjunctions pose no problems. As

well, ∀ has an easy argument, since we are taking substructures. It remains to show that if A |=

∃z∀x (z < x→ φ (x, ā)), then B |= ∃z∀x (z < x→ φ (x, ā)), when B is a cofinal substructure containing

ā. Let c be the witness for z in A. Since B is cofinal, we can find d in B with c < d. Then certainly

A |= ∀x (d < x→ φ (x, ā)). Then for every element, b of B with d < b, A |= φ (b, ā). Thus, by induction,

B |= φ (b, ā) as well. Thus, B |= ∀x (d < x→ φ (x, ā)), so B |= ∃z∀x (z < x→ φ (x, ā)).
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2.4.10. Let L be a signature and L+ the signature got by adding to L a new n-ary relation symbol

P . Let x̄ be an n-tuple of variables and φ (x̄) a formula of L+ in which P is positive. Let A be an

L-structure; suppose X and Y are n-ary relations on dom(A) with X ⊆ Y . It is clear that the identity

map on A forms an embedding e : (A,X) → (A, Y ) of L+-structures. (a) Show that e preserves φ. (b)

For any n-ary relation X on dom(A) we define π (X) to be the relation {ā | (A,X) |= φ (ā)}. Show

that if X ⊆ Y then π (X) ⊆ π (Y ).

(a) Since e is not in fact an embedding, but a homomorphism, I take it as such. We go by induction

on the complexity of φ. All literals not mentioning P are obviously preserved, and so are the atomic

formulas with P , since if X (t (ā)), for some ā in A, then Y (t (eā)), since X ⊆ Y . Conjunctions and

disjunctions harm nothing. Existential quantification is also easy, and since e is surjective, universal

quantification also follows.

(b) e defines an injective mapping from π (X) to π (Y ).

2.5.1. Let L be a first-order language and B an L-structure. Suppose X is a set of elements of B

such that, for every formula ψ (x̄, y) of L and all tuples ā of elements of X , if B |= ∃yψ (ā, y) then

B |= ψ (ā, d) for some element d in X . Show that X is the domain of an elementary substructure of B.

We need only show that X is a structure. But B satisfies the formulas ∃x (x = c) and ∃y (f (x̄) = y)

for all constants and function symbols, so X contains all constants and is closed under functions, and

is thus a substructure.

2.5.2. Give an example of a structure A with a substructure B such that A ∼= B but B is not an

elementary substructure of A.

Let B = (ω,<) and A = (1 + ω,<).

2.5.3. Let B be an L-structure and A a substructure with the following property: if ā is any tuple of

elements of A and b is an element of B, then there is an automorphism f of B such that fā = ā and

fb ∈ dom (A). Show that if φ (x̄) is any formula of L∞ω and ā a tuple in A, then A |= φ (ā) ⇔ B |= φ (ā).

We show that A 4 B. Suppose B |= ∃yψ (y, ā). Let b be a witness. Then we can take an

automorphism of B, f , such that fb ∈ A and fā = ā. But then, since B |= ψ (fb, f ā), as f is an

automorphism, B |= ψ (fb, ā), so A and B fulfill the Tarski-Vaught criterion.

2.5.4. Suppose B is a vector space and A is a subspace of infinite dimension. Show that A 4 B.

Use the previous problem, noting that if we have B |= φ (b, ā) and b /∈ A, there is an automorphism

sending b to any element in A not in the span of ā and fixing ā.

2.5.5. Let L be a countable first-order language and B an L-structure of infinite cardinality µ. Show

that for every infinite cardinal λ < µ, B has an elementary substructure of cardinality λ.

Choose anyX ⊆ B of cardinality λ. Form a chain of length λ of increasing sets as follows: enumerate

all formulas ∃yψ (x, ā), with ā a tuple in X . For each such formula, if B satisfies it, adjoin a witness
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to X . There are λ such formulas, since L is countable, so after λ-many stages, we have witnesses to

every such formula, in our new set X1, still of cardinality λ. Now repeat. After ω repetitions, we are

still of cardinality λ, and now every tuple comes from some finite Xi, and thus every formula on ā with

a realization in B has a realization in Xi+1. Now apply Exercise 1.

2.5.6. Let (Ai | i < γ) be a chain of structures such taht for all i < j < γ, Ai is a pure substructure

of Aj . Show that each structure Aj (j < γ) is a pure substructure of the union
⋃

i<γ Ai.

Let ϕ (ā) be any p.p. formula, of the form ∃x̄ (ψ1 (x̄, ā) ∧ . . . ∧ ψk (x̄, ā)) with the union, denoted

B, satisfies ϕ (ā). Let Ai be any model containing ā. We must show that Ai |= ϕ (ā). The witnesses

for x̄ in B have come at some finite stage, say Aj . If j < i, we are done, since the ψk’s are atomic,

B |= ϕ (ā) ⇒ Aj |= ϕ (ā) ⇒ Ai |= ϕ (ā). If j > i, then since Aj is a pure extension of Ai and

Aj |= ϕ (ā), Ai |= ϕ (ā).

2.5.7. Show that if n is a positive integer, then there are a first-order language L and L-structures

A and B such that A ⊆ B and for every n-tuple ā in A and every formula φ (x0, . . . , xn−1) of l,

A |= φ (ā) ⇔ B |= φ (ā), but B is not an elementary extension of A.

Let L be the language of a (2n+ 2)-ary relation symbol R, a (2n+ 2)-ary equivalence relation E,

and an n+ 1-ary relation P . Let K be the class of all finite structures with the properties that E is

an equivalence relation on sets of size n + 1, R defines a linear order on the equivalence classes of E,

and P is true on at most one equivalence class, which has no elements less than it in the R-ordering.

We can ensure that E is defined on sets by having all n + 1-tuples with a repeated element in the

same equivalence class, which is not ordered by R. K clearly has HP, JEP, and AP. Let C+ be its

Fräıssé limit. Let C be C+ without P in the language. Let {a0, . . . , an} be a set in what was P . Let

{b0, . . . , bn} be a set disjoint from the ai’s which was not in P . Since the ai’s and the bi’s have the

same quantifier-free type, it is not hard to see, through a back-and-forth argument, that there is an

isomorphism of C taking ai to bi, f . Let the image of this isomorphism be A ⊂ C. Then necessarily

A contains no n+ 1-tuples which are in any equivalence class less than that of {b0, . . . , bn}. Now, let

φ (ā) be any formula with at most n parameters from A. Clearly, C |= φ (ā) ⇔ A |= φ (fā). I show

that, for ā of length at most n, C |= φ (ā) ⇔ C |= φ (fā), which is sufficient. But this follows by the

ultrahomogeneity of C+, as in C+, these two tuples have the same quantifier-free type (since P cannot

be true on any term of them), and thus there is an automorphism of C+, which is an automorphism

of C, taking one to the other. But clearly, if ā is an n + 1-tuple, C and A can disagree, say on the

formula ∃x0 . . . xn−1 ((x0, . . . , xn−1)Rā).

2.5.8. Suppose R is a ring and A, B are left R-modules with A ⊆ B, and, for every element a and A

and every p.p. formula φ (x) without parameters, A |= φ (a) ⇔ B |= φ (a). Show that A is pure in B.

Go by induction on n. Let ā be an n-tuple in A with B |= φ (ā). Then B |= ∃xnφ (ā|n, xn).

By induction hypothesis, there is then a c in A such that A |= φ (ā|n, c). Thus, B |= φ (ā|n, c).
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We now examine what this means. φ (ȳ) is of the form ∃x̄ (ψ1 (x̄, ȳ) ∧ . . . ∧ ψn (x̄, ȳ)), with each ψi

an equation, say of the form
∑

j<k p
i
jxi +

∑

j<n+1 q
i
jyi = 0, with pi

j and qi
j elements of R. Since

we have φ (ā), this gives us ∃x̄
∧

i≤n

∑

j<k p
i
jxi +

∑

j<n+1 q
i
jai = 0. Let b̄ witness x̄, so we have

∧

i≤n

∑

j<k p
i
jbi +

∑

j<n+1 q
i
jai = 0. As well, we have φ (ā|n, c), so by the same argument, we have d̄

with
∧

i≤n

∑

j<k p
i
jdi+

∑

j<n q
i
jai+q

i
n+1c = 0. Now, for each i, by setting the two left sides equal to each

other (since they are both 0), and then gathering terms, we have
∑

j<k p
i
j (bi − di)+ qi

n+1 (an − c) = 0,

and thus ∃x̄ (ψ1 (x̄, (0, . . . , 0, an − c)) ∧ . . . ∧ ψn (x̄, (0, . . . , 0, an − c))), so B |= φ (0, . . . , 0, an − c). But

this expression can easily be rewritten so that there are fewer than n+ 1 parameters – in fact, 1 will

do. Thus, by induction, A |= φ (0, . . . , 0, an − c). Performing the same procedure as above, we can add

this solution to (ā|n, c) to yield A |= φ (ā).

2.5.9. Let R be a ring and L the language of left R-modules. Let M be a left R-modul and

φ (x0, . . . , xn−1) a p.p. formula of L. (a) Show that φ (Mn) is a subgroup of Mn regarded as an

abelian group. (b) Show that if φ (x̄, ȳ) is a p.p. formula of L and b̄ a tuple from M , then φ
(

Mn, b̄
)

is

either empty or a coset of the p.p.-definable subgroup of φ (Mn, 0, . . . , 0). Show that both possibilities

can occur.

(a) The above argument shows that φ (Mn) is closed under addition, and multiplying through by

−1 shows that it is closed under inverses as well. Thus it is an abelian group.

(b) If φ
(

Mn, b̄
)

is not empty, we can perform the above procedure to show that the difference

of any two elements of φ
(

Mn, b̄
)

is an element of φ (Mn, 0, . . . , 0), and that given any element of

φ
(

Mn, b̄
)

, adding any element of φ (Mn, 0, . . . , 0) preserves its membership. Thus, it is a coset. If we

let ψ (x, y1, y2) be 0x+ 0y1 + y2 = 0, and b 6= 0, the set ∃xψ (x, y1, b) is empty. If we let ψ (x, y1, y2) be

0x+ y1 + y2 = 0, then whatever b is, there is a unique solution which is a coset of {0}.

2.6.1. Let L be a signature. Form a signature Lr from L as follows: for each positive n and each

n-ary function symbol F of L, introduce an (n+ 1)-ary relation symbol RF . If A is an L-structure,

let Ar be the Lr-structure got from A by interpreting each RF as the relation {(ā, b) | A |= (F ā = b)}.

(a) Define a translation φ → φr from formulas of L to formulas of Lr, which is independent of A.

Formulate and prove a theorem about this translation and the structures A, Ar. (b) Extend (a) so as

to translate every formula of L into a formula which contains no function symbols and no constants.

(a) Given φ, we can assume that φ is unnested. Now, replace each atomic formula of the form

F (x̄) = y with RF (x̄y). This is φr. The theorem is that A |= φ (ā) ⇔ Ar |= φr (ā) for any tuple ā in

A. It is clearly true for atomic formulas, and so by induction.

(b) For each constant symbol c, introduce a relation Rc, interpreted on Ar as {a | A |= a = c}.

2.6.2. Show that if L is a first-order language, then every formula φ (x̄) of L is logically equivalent to

a negation normal formula φ∗ (x̄) of L.
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We go by induction on the complexity of formulas. For atomic and negations of atomic formulas,

there is nothing to do. The cases φ =
∧

ψi, φ =
∨

ψi, φ = ∃xψ, and φ = ∀xψ are done by induction,

since if the ψs are in negation normal form, so is φ. Suppose φ = ¬ϕ. Now we go by induction on

complexity of ϕ. Go through the above cases. If ϕ =
∧

ψi, then ¬ϕ is equivalent to ¬
∧

ψi, so
∨

¬ψi,

and we are done by induction. Similarly for
∨

. ∃xψ yields ∀x¬ψ, and similarly for ∀. Finally, if ϕ is

¬ψ, then φ is ψ, and by induction we are done.

2.6.3. Let L be a first-order language, R a relation symbol of L and φ a formula of l Show that the

following are equivalent. (a) R is positive in some formula of L which is logically equivalent to φ. (b) φ

is logically equivalent to a formula of L in negation normal form in which R never has ¬ immediately

before it.

Since every negation normal formula as above is in the class of formulas which are positive in R

(since negation normal formulas as above can include any literal positive in R, and are closed under
∧

,
∨

, and quantification), (b) implies (a). Conversely, it is easy to see that any formula which is positive

in R is in the required negation normal form.

2.6.4. Let T be the theory of linear orderings. For each positive integer n, write a first-order sentence

which expresses (modulo T ) ‘There are at least n elements’, and which uses only two variables, x and

y.

∃x (∃y (y < x ∧ ∃x (x < y ∧ ∃y (. . .)))).

2.6.5. Let T0, T1 and T2 be first-order theories. Show that if T2 is a definitional expansion of T1 and

T1 is a definitional expansion of T0, then T2 is a definitional expansion of T0.

We must show that, for every symbol of L2 \L0, there is a definition of it in T2 in terms of L0. Let

R be any such symbol. Since T2 is a definitional expansion of T1, T2 ⊢ ∀x (R (x̄) ↔ θ (x̄)), for some θ

in L1. Since T1 is a definitional expansion of T0, for any symbol P in L1 \L0, T1 ⊢ ∀x̄ (P (x̄) ↔ ψ (x̄)),

for some formula ψ in L0. Thus, T1 proves the equivalence of any formula in L1 with one in L0, and

thus T2 does too, since it is a definitional expansion. Thus, we have θ∗ in L0 equivalent to θ modulo

T2, so T2 ⊢ ∀x̄ (R (x̄) ↔ θ∗ (x̄)), and so T2 is a definitional expansion of T0. (The other parts of being

a definitional expansion are trivially checked.)

2.6.6. Let L an L+ be signatures with L ⊆ L+; let T be a theory of signature L+ and S a symbol

of signature L+. Suppose that there are two models A, B of T such that A|L = B|L but SA 6= SB.

Deduce that A is not explicitly definable in T in terms of L.

We show the contrapositive. Suppose S is explicitly defined by T . Then T ⊢ ∀x̄ (S (x̄) ↔ θ (x̄)), say.

Then, since A |= T and B |= T , A |= ∀x̄ (S (x̄) ↔ θ (x̄)), and likewise for B. Now, since SA 6= SB, we

can find ā in SA \SB (WLOG). Then A |= θ (ā), but B |= ¬θ (ā). But since θ is in L, then A|L 6= B|L.
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2.6.7. Let L+ be the first-order language of arithmetic with symbols 0, 1,+, ·, and let T be the

complete theory of the natural numbers in this language. Let L be the language L+ with the symbol

+ removed. Show that + is not explicitly definable in T in terms of L.

Without +, N is isomorphic to a free abelian group on countably many generators (the primes),

along with an element 0. We can thus define + on this structure either as usual, or by first taking

an isomorphism between 2 and 3 and then defining it as usual. Let A be the first model, and B the

second. Then we have A|L = B|L, but 2 +A 2 = 4, while 2 +B 2 = 6.

2.6.8. (a) Show that if T ⊆ T+ and every L-structure which is a model of T can be expanded to form

a model of T+, then T+ is a conservative extension of T . In particular every definitional expansion is

conservative. (b) Prove that the converse of (a) fails.

(a) Suppose T+ is not a conservative extension of T . Then, for some φ, either T+ ⊢ φ and T ⊢ ¬φ,

or T+ ⊢ φ and T 6⊢ φ. The first case is trivial. In the second, take a model A |= T with A |= ¬φ,

possible since T does not prove φ. Then plainly A cannot be expanded to a model of T+.

(b) Let T be the theory of (ω,<). Let T+ be Peano arithmetic. Clearly, T+ and T have the

same L-consequences. However, T has a model ω + Z. This cannot be a model of T+: let (1, 0)

denote the 0 element of Z. If we can expand this model to a model of T+, there must be some a with

a + a = (1, 0). But if a ∈ ω, then a + a < (1, 0), and if a ∈ Z, then let a = (1,−n), for some n ∈ N.

Then (1, 0) − (1,−n) = n, and so, since a > n, a+ a > a+ n = (1, 0). Thus, a does not exist, and so

this cannot be a model of T+.

2.6.9. Let L be the language with constant symbol 0 and 1-ary function symbol S; let L+ be L with

a 2-ary function symbol + added. Let T+ be the theory ∀xx + 0 = x, ∀xyx + Sy = S (x+ y). Show

that T+ is not a conservative extension of the empty theory in L.

We must show that there is an L-structure, A, such that A cannot be expanded to a model of T .

Let A have three elements, 0, 1, and 1′, with S0 = 1, S1 = 0, and S1′ = 0. Now, try to make A a

model of T . We must define 1′ + 1′. Suppose 1′ + 1′ = 0. Then 1′ + S1′ = S (1′ + 1′) = S0 = 1, so

1′ = 1, which is false.

2.6.10. Show that the theory of boolean algebras is definitionally equivalent to the theory of commu-

tative rings with ∀xx2 = x.

We translate ∩ as · and ∪ as +. x∗ is translated as 1 − x. Commutativity, associativity, and dis-

tributivity are the same for both. The existence of a multiplicative identity is an axiom of commutative

rings and easily proved for boolean algebras. The existence of an additive identity is the same. Finally,

boolean algebras have ∀xx ∩ x = x, equivalent to a commutative ring’s condition that x2 = x, and

boolean algebras have x∩x∗ = 0, which is true in such commutative rings, since x (1 − x) = x−x2 = 0.

3.1.1. Let L be a first-order language and L′ a language which comes from L by adding constants.
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Show that if T is a Skolem theory in L, then T is a Skolem theory in L′ too (and hence so is any theory

T ′ ⊇ T in L′).

Consider any formula φ (x̄, y) of L′. Let c̄ be the new constants of L′ which are used in φ.

Then write φ as φ′ (x̄, c̄, y), with φ′ (x̄, z̄, y), a formula of L. Since T is a Skolem theory, T ⊢

∀x̄z̄ (∃yφ′ (x̄, z̄, y) → φ (x̄, z̄, t (x̄, z̄))), for some term t of L. But then, by the lemma on constants,

T ⊢ ∀x̄ (∃yφ′ (x̄, c̄, y) → φ′ (x̄, c̄, t (x̄, c̄))), so T ⊢ ∀x̄ (∃yφ (x̄, y) → φ (x̄, t′ (x̄))), with t′ (x̄) = t (x̄, c̄) a

term of L′. Thus, T remains Skolem.

3.1.2. Use the downward Löwenheim-Skolem theorem and the result of Example 3 in the next section

to show that if A and B are dense linear orderings without endpoints, then A ≡ B.

Let A and B be any two dense linear orders without endpoints (DLOWE). By the downward

Löwenheim-Skolem theorem, there are countable A′ 4 A and B′ 4 B. By Example 3, A′ ∼= B′, so

A ≡ A′ ≡ B′ ≡ B.

3.1.3. Show that, if T is a first-order theory which has Skolem functions, then T is model-complete.

Give an example of a first-order theory which is model-complete but doesn’t have Skolem functions.

We show that if A |= T , B |= T , and A ⊆ B ,then A 4 B. By the Tarski-Vaught criterion, it

suffices to show that whenever B |= ∃yϕ (ā, y), there exists d ∈ A such that B |= ϕ (ā, d), for all ϕ ∈ L

and ā in A. Since T has Skolem functions, T ⊢ ∀x̄ (∃yϕ (x̄, y) → ϕ (x̄, t (x̄))) for some term t. Thus,

B |= ϕ (ā, t (ā)). But since A is a substructure, t (ā) is the desired d. Thus, A 4 B.

The theory of DLOWE’s is model-complete, but does not have Skolem functions. It is model-

complete because it has elimination of quantifiers, so ∃yϕ (ā, y) reduces to a statement just about the

ordering of ā, which is true in A iff it is true in B. It does not have Skolem functions since it has no

non-trivial terms.

3.1.4*. Let L be a first-order language with at least one constant. Show that if T is a Skolem theory

in L, then T has elimination of quantifiers.

We know that every formula φ (x̄) with x̄ non-empty is equivalent to a quantifier-free formula. The

question thus reduces to asking if sentences of the form ∃yθ (y) and ∀yθ (y), with θ quantifer-free, are

equivalent to quantifier-free sentences in T (i.e., true or false). Clearly, we need only deal with the first

kind. Let θ′ (z, y) be θ (y) ∧ z = c. Then certainly T ⊢ ∃xθ (x) ↔ ∃z∃yθ′ (z, y). But ∃yθ′ (z, y) has

unquantified variables, so it is equivalent, modulo T , to θ∗ (z), with θ∗ quantifier-free. Now, if A |= T

is a model with A |= θ (a), for some a ∈ A, then certainly A |= ∃yθ′ (c, y), so A |= θ∗ (c). Conversely,

suppose A |= θ∗ (c). Then A |= ∃yθ′ (c, y), so A |= ∃xθ (x). Thus, modulo T , ∃xθ (x) and θ∗ (c) are

equivalent. Thus, T has elimination of quantifiers.

3.1.5*. Suppose T is a theory in a first-order language L, and, for every quantifier-free formula φ (x̄, y)

of L with x̄ non-empty, there is a term t of L such that T entails the sentence ∀x̄ (∃yφ (x̄, y) → φ (x̄, t (x̄))).
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(a) Show that T has Skolem functions. (b) Show that for any theory T ′ in L with T ⊆ T ′, T ′ is equiv-

alent to an ∀1 theory.

(a) Lemma 2.3.1 shows that every formula φ (x̄, y) with x̄ non-empty is equivalent to a quantifier-free

formula φ∗ (x̄, y). Thus, we can find the appropriate term for ∃yφ (x̄, y) by looking at φ∗.

(b) Note that all of the above sentences are ∀1. Since they collectively imply that every other

sentence is either an ∃1 sentence, a ∀1 sentence, or true or false, we know that T ′ is equivalent to a

theory with sentences of the above form, of the form ∃xθ (x), and ∀xθ (x), with θ quantifier-free. We

must show that the first type is actually equivalent to a ∀1 sentence. But this is false if L has no

constants. Let T be exactly those sentences above, and let T ′ = T ∪{∃x (x = x)}. Since every sentence

of T is ∀1, the empty model is a model of T . ∃x (x = x) cannot be equivalent to a ∀1 sentence, since

then that sentence would be true in the empty model. But the empty model is not a model of T ′. If

L has a constant symbol, or if the empty model is excluded:

Let ∃xθ (x) be any sentence in T ′, with θ quantifier-free. We show that it is equivalent to a ∀1

sentence, modulo T . Let θ′ (z, y) be θ (y) ∧ z = z. Then ∃xθ (x) ↔ ∀z∃yθ (y, z). Since T ′ is Skolem,

we have ∃yθ (y, z) ↔ θ∗ (z), with θ∗ quantifier-free. Then ∃xθ (x) ↔ ∀zθ∗ (z), so ∃xθ (x) is equivalent

to a ∀1 sentence.

3.1.6. Let L be a first-order language and A an L-structure which has Skolem functions. Suppose X

is a set of elements which generate A, and < is a linear ordering of X (not necessarily expressible in

L). Show that every element of A has the form tA (c̄) for some term t (x̄) of L and some tuple c̄ from

X which is strictly increasing in the sense of <.

Every element of A has the form tA (c̄), for some term t (x0, . . . , xn−1) and some tuple c̄ from X .

It is possible that c̄ = (c0, . . . , cn−1) is not increasing in X in the sense of <. Let d̄ be the tuple where

the ci’s are put in increasng order. Let i (m) be the index of ci in d̄. (Thus, if c5 is the first element

of d̄, i (5) = 0.) Then it is easy to construct a new term t′ (x0, . . . , xn−1) = t
(

xi(0), . . . , xi(n−1)

)

with

t′
(

d̄
)

= t (c̄), so t (c̄) has the desired form.

3.1.7. Let K be the class of boolean algebras which are isomorphic to power set algebras of sets. Show

that K is not first-order axiomatisable.

Let A be isomorphic to the power set algebra of ω. Then A is not countable. However, A has a

countable elementary substructure, A′. A has infinitely many atoms, and this fact is in Th (A), so

A′ has infinitely many atoms. But then A′ cannot have the full power set of its atoms. Since no

set of first-order sentences distinguishes A from A′ in the language of boolean algebras, K cannot be

first-order axiomatizable.

3.1.8. Let L be a finite relational signature and A an infinite L-structure. Suppose there is a simple

group which acts transitively on A. Show that A has a countable elementary substructure on which

some simple group acts transitively.
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Let G be the simple group acting transitively on A. Fix any a in A. If g and h are any distinct

elements of G then ga 6= ha, since otherwise a = g−1ha, but g−1h 6= 1, and so the subgroup of G

{g | ga = a} is a proper normal subgroup. Thus, each element of G is associated to exactly one element

of A – the image of a under that element – and the association is bijective, since G is transitive. Thus,

we can regard G as an expansion of A. Then let H be a countable elementary substructure of G as an

expansion of A. H is simple by Example 1, and acts transitively on itself. But it can also be interpreted

as a countable elementary substructure of A, thus it is the desired one.

3.2.1. Prove Lemma 3.2.1(b) [If β < γ and A ∼γ B then A ∼β B].

Let player ∃ follow the strategy for EFγ (A,B) when playing EFβ (A,B). After β stages, if (A, ā) 6≡0
(

B, b̄
)

, then certainly after γ stages they will not be 0-equivalent, so since ∃ can win the γ game, after

β stages they must be 0-equivalent, so ∃ wins the β game.

3.2.2. (a) Show that, in the game EFγ (A,B) a strategy σ for a player can be written as a family

(σi | i < γ) where for each i < γ, σi is a function which picks the player’s i-th choice σi (x̄) as a function

of the sequence x̄ of previous choices of the two players. (b) Show that σ can also be written as a

family (σ′
i | i < γ) where for each i < γ, σ′

i is a function which picks the player’s i-th choice σ′ (ȳ) as

a function of the sequence ȳ of previous choices of the other player. (c) How can the functions σi be

found from the functions σ′
i, and vice versa?

(a) We assume the domains of A and B are disjoint, for simplicity. We define σi. Let
(

c̄, d̄
)

be

the choices made so far (lengths are equal if the strategy is for ∀, and one is one element longer if the

strategy is for ∃). Since we have a strategy σ, there is a rule for choosing the next element; in other

words, the next element must satisfy some definable properties, and such an element always exists in

A ∪B. Then, by choice, we can take σi

(

c̄, d̄
)

to be a specific such element. Doing this for all possible

choices of
(

c̄, d̄
)

of the appropriate lengths defines σi, and such elements can always be found because

σ is a winning strategy. It goes without saying that σi

(

c̄, d̄
)

continues the winning strategy.

(b) We define σi, given (σj | j < i) and c̄, a list of the opponent’s moves, with the assumption that

for each j < i, σj preserves the winning strategy of σ. Then (c̄, 〈σj (c̄|j) | j < i〉) is a winning position

for the player, and it is definable from c̄. Then, by the same choice procedure, we can let σi be the

next move under the strategy σ.

(c) Finding σi from σ′
i is trivial – σi

(

c̄, d̄
)

= σ′
i (c̄). The other way, we define inductively. σ′

0 = σ0.

If we have defined σ′
j in terms of σj for all j < i, let σ′

i (c̄) = σi

(

c̄,
〈

σ′
j (c̄) | j < i

〉)

.

3.2.3. The game Pω (A,B) is defined exactly like EFω (A,B) except that player ∀ must always choose

from structure A and player ∃ from structure B. Show that, if A is at most countable, then player ∃

has a winning strategy for Pω (A,B) if and only if A is embeddable in B. (b) What if player ∀ must

choose from structure A in even-numbered steps and from structure B in odd-numbered steps (and

player ∃ vice versa).
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Suppose A is embeddable in B. Then if player ∃ just follows the embedding map, she will guarantee

a win. Conversely, if ∃ can win any game, let ∀ play to exhaust A, and let his play be ā. Then

(A, ā) ≡0

(

B, b̄
)

, so the diagram of A is in B, thus A embeds into B by taking ā to b̄.

(b) This game (denoted P ′) is equivalent to the EFω (A,B) game. Note that P ′ imposes no

restrictions on ∃, since her move must always be in the opposite model from ∀’s. Thus, if ∃ has a

winning strategy in EFω (A,B), she has one in P ′ too. Suppose ∃ has a winning strategy in P ′. We

translate it to a winning strategy in EFω (A,B). ∃ plays the following side game in P ′. If at turn i,

∀ chooses from the required model in P ′, then in ∃’s side game, her ∀ makes that same choice. Since

∃ can win P ′, she uses her winning strategy there to make her move. If ∀ chooses from the incorrect

model, ∃ first has her ∀ player make any choice from the correct model, makes her response to that

move based on her strategy, and then has her ∀ make the real ∀’s choice, which is now in the right

model. Then she applies her strategy to find a response. In the end, her side game will have sequences

ā and b̄ with (A, ā) ≡0

(

B, b̄
)

, and the real game will have subsequences, ā′ and b̄′, but then certainly

(A, ā′) ≡0

(

B, b̄′
)

.

3.2.4. The game Hω (A,B) is defined exactly like EFω (A,B) except that player ∃ wins the play
(

ā, b̄
)

iff for every atomic formula φ, A |= φ (ā) ⇒ B |= φ
(

b̄
)

. Show that, if A and B are at most countable,

then player ∃ has a winning strategy for Hω (A,B) if and only if B is a homomorphic image of A.

If B is a homomorphic image of A, ∃ can just use the homomorphism as a strategy. Conversely,

if ∃ has a winning strategy, let ∀ play to exhaust A and B. Then ∃’s moves define a homomorphism

from A onto B.

3.2.5. Suppose A and B are two countable dense linearly ordered sets without endpoints, both

partitioned into classes P0, . . . , Pn−1 so that each class Pi occurs densely in both orderings. Show that

A is isomorphic to B.

We show A is back-and-forth equivalent to B, which suffices, since they are both countable. Let

ā and b̄ from A and B respectively be given, with (A, ā) ≡0

(

B, b̄
)

. Let ∀ choose c ∈ A (WLOG).

Suppose ai < c < aj , with no ak between ai and aj (the cases c < ai, all i, or ai < c, all i, are handled

similarly). Suppose Pk (c). Then, since Pk is dense in B, we can find d, with bi < d < bj and Pk (d),

so (A, ā, c) ≡0

(

B, b̄, d
)

, and so we can extend indefinitely, so ∃ has a winning strategy, which is just

to preserve 0-equivalence.

3.2.6. (a) If ζ is a linear ordering, let ζ+ be the ordering which we get by replacing each point of ζ

by a pair of points a, b with a < b. Show that if ζ and ξ are dense linear orderings without endpoints

then ζ+ and ξ+ are back-and-forth equivalent. (b) Show that, if ζ and ξ are dense linear orderings

which have first points but no last points, then ζ is back-and-forth equivalent to ξ.

(a) For ease of notation, let P (a, b) be true iff a and b are as above in ζ+ (or ξ+), and I (a) be true

if a is the first element in a pair. Let ā and b̄, from A and B respectively, be such that (A, ā) ≡0

(

B, b̄
)

,
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and for each ai, aj ∈ ā, P (ai, aj) ⇔ I (bi, bj), and I (ai) ⇔ I (bi). Now let ∀ choose any c in A. Let

ai < c < aj be its place in ā. If P (ai, c) or P (c, aj), choose d to be the corresponding element for bi or

bj. This choice will preserve the desired properties since for any other bk, if bk = d, then P (bi, bk) (for

example), so P (ai, ak), so c = ak. Inequalities are easily seen to be preserved. If c is not paired with

ai or aj, let d be any element between bi and bj which is not paired with either, and has I (d) ⇔ I (c).

Then d preserves the desired properties. Thus, ∃ has a strategy which preserves 0-equivalence, and

thus a winning strategy.

(b) We can add tails to ζ and ξ and make them DLOWE’s. Then they are back-and-forth equivalent.

But any game in the original ζ and ξ corresponds to a game where ∀ chooses the first element of ζ, ∃

responds with the first element of ξ (which is a winning strategy), and then ∀ only chooses elements

above those elements after that. Since ∃ can win this game, she can win the original back-and-forth

game between ζ and ξ.

3.2.7. Let A, B and C be fields; suppose A ⊆ B, A ⊆ C, and both B and C are algebraically closed

and of infinite transcendence degree over A. Let (B,A) be the structure consisting of B with a 1-ary

relation symbol P added so as to pick out A; and likewise with (C,A) and C. Show that (B,A) is

back-and-forth equivalent to (C,A).

∃’s strategy is as follows. Let
(

b̄, c̄
)

be the plays so far from B and C, with
(

B, b̄
)

≡0 (C, c̄). If

∀ chooses an element (of B, say) which is algebraic over A ∪ b̄, let p
(

x, b̄
)

be its minimal polynomial

over A ∪ b̄. Since C is algebraically closed, there is a solution to p (x, c̄), since if the polynomial has

no solutions, it must be trivial, which is a quantifier-free condition on c̄, and therefore also true on

b̄. Let ∃’s response be a solution to this polynomial. (Note that this strategy maps each element

of A to itself.) If ∀ chooses an element which is transcendental over A ∪ b̄, ∃ chooses any element

transcendental over A∪ c̄, possible since C (and B) have infinite transcendence degree. Let b̄, c̄ be the

sequences at the end of the game. Suppose
(

B, b̄
)

6≡0 (C, c̄). Then for some atomic formula θ (x̄), we

have B |= θ (bi1 , . . . , bin
), but C |= ¬θ (ci1 , . . . , cin

) (or vice versa). θ must be an equality, so, assuming

that in > ij for j < n, we have a polynomial expression for bin
in terms of the other bij

’s. But then by

construction, bin
and cin

satisfy the same minimal polynomial, which must then divide the polynomial

in θ, so the polynomial with cij
’s is 0 as well, so C |= θ (ci1 , . . . , cin

).

3.2.8. Show that if A, B are respectively back-and-forth equivalent to A′, B′, then their disjoint sum

A+B is back-and-forth equivalent to A′ +B′.

∃ plays two side games, one on A,A′ and one on B,B′ when playing the game between A+B and

A′ +B′, yielding sequences
(

ā, b̄, ā′, b̄′
)

, with (A, ā) ≡0 (A′, ā′), and the same for B and B′. Note that

any atomic formula with elements of ā and b̄ is false in A+B (and similarly for A′ +B′), so any atomic

formula with parameters from A+ B is equivalent to two atomic formulas, one with parameters from

A and one with parameters from B, and by ∃’s strategy, both have the same truth value in A′ and B′,
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and hence in A′ +B′.

3.3.1. Prove Theorem 3.3.2(c) [for every k < ω and every unnested formula φ (x̄) of L with n free

variables x̄ and quantifier rank at most k, we can effectively find a disjunction θ0 ∨ . . . ∨ θi (x̄) in Θn,r

which is logically equivalent to φ]. [Note that the definition in the text of Θn,k+1 is incorrect – for the

conjunction, it should be i /∈ X and ¬θi.]

Go by induction on k. Since Θn,0 includes all conjunctions of primitives, and φ can be written as a

disjunction of conjunctions, φ is certainly a disjunction in Θn,0, and since the process of writing φ as a

disjunction of conjunctions is effective, we can find the appropriate elements of Θn,0 effectively. Now

we do it for k+1. Suppose φ has quantifier-rank k+1. Note that Θn,k+1 is closed under conjunctions,

and certainly if each term in a disjunction is writeable as a disjunction of elements of Θn,k+1, then

the whole disjunction is, so we can assume that φ has the form ∃yφ′ or ∀yφ′ for some formula φ′ with

quantifier-rank k and n + 1 free variables. Then by induction φ′ can be expressed as a disjunction

from Θn+1,k, say by
∨

i∈X θi, for some finite set X ⊆ m, with |Θn+1,k| = m. Then ∃yφ′ is equivalent

to
∨

i∈X ∃yθi, which is equivalent to
∨

i∈X

(

∨

Y ⊆m,i∈Y

∧

j∈Y ∃yθj ∧ ∀y
∧

j /∈Y ¬θj

)

, and since for each

fixed i and Y the expression is an element of Θn,k+1, the disjunction is a disjunction of elements of

Θn,k+1. ∀yφ′ is ∀y
∨

i∈X θi, and since ∀y
∨

i∈m θi is logically true, and ∀y (θi → ¬θj) is true for all

i, j < m, we have ∀y
∨

i∈X θj is equivalent to ∀y
∧

i/∈X ¬θi, and also to
∨

i∈X ∃yθi, and so ∀yφ′ is

equivalent to
∨

i∈X ∃yθi ∧ ∀y
∧

i/∈X ¬θi, which is in Θn,k+1.

3.3.2. Show that in the statement of Theorem 3.3.2, the formulas in Θn,k can all be taken to be ∃k+1

formulas. Show also that they can all be taken to be ∀k+1 formulas.

We show this by simultaneous induction. It is clear for k = 0. At k + 1, every term is of the form
∨

i∈X ∃xnχi (x0, . . . , xn) ∧ ∀xn

∧

i/∈X ¬χ (x0, . . . , xn). By induction, we can assume that each χi with

i ∈ X is ∃k, and each with i /∈ X is ∀k. Thus we have a disjunction of ∃k statements along with

a conjunction of ∀k statements. We can pull all of the quantifiers out of the disjunction, preserving

the ∃k (at the cost of increasing the total number of quantifiers), and likewise with the disjunction.

Then we have ∃x̄1∀x̄2 . . . θ1 ∧ ∀ȳ1∃ȳ2 . . . θ2, the conjunction of ∃k and ∀k formulas. Then, pulling the

∀ quantifier out first gets us an ∀k+1 formula, and pulling the ∃ quantifier out first yields an ∃k+1

formula.

3.3.3. Show that every unnested first-order formula of quantifier rank k is logically equivalent to an

unnested first-order formula of quantifier rank k which is in negation normal form.

Problem 2.6.2 shows that every first-order formula is equivalent to one in negation normal form.

Observing that proof, it is clear that if φ is unnested, so is the negation normal form, and the operations

performed do not raise the quantifier rank, so the negation normal form has the same quantifier rank

as φ.
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3.3.4. Find a simple set of axioms for Th (Z,+, <).

Let ˜∨ denote exclusive or. We construct a set of axioms, T . T has axioms that Z is an ordered

group with least positive element, 1, and for every positive integer n and for all x, exactly one of

x, x+ 1, . . . , x+n− 1 is divisible by n. We write this as ∀x ˜∨
i<n∃y (ny = x+ i), for each n. Note that

this allows us to define (mod n) for any model of T . Then the proof of Lemma 3.3.7 goes through as

before, yielding the same elimination set. This allows us to play a back-and-forth game between any

two models of T , showing that they are back-and-forth equivalent, and thus elementarily equivalent.

Therefore T is a set of axioms for Th (Z,+, <).

3.3.5*. Let L be the first-order language of linear orderings. (a) Show that if h < 2k then there

is a formula φ (x, y) of L of quantifier rank ≤ k which expresses (in any linear ordering) ‘x < y and

there are at least h elements strictly between x and y. (b) Let A be the ordering of the integers, and

write s (a, b) for the number of integers strictly between a and b. Show that if a0 < . . . < an−1 and

b0 < . . . < bn−1 in A, then (A, a0, . . . , an−1) ≈k (A, b0, . . . , bn−1) iff for all m < n − 1 and all i < 2k,

s (am, am+1) = i↔ s (bm, bm+1) = i.

(a) For arbitrary i, let j be the unique number such that i = j + 1 + j, or i = j + 1 + (j + 1)

(depending if i is odd or even), and let j∗ = j in the first case and j + 1 in the second. Then we can

build up φh as follows. φ0 is x < y. φi is ∃z (φj (x, z) ∧ φj∗ (z, y)). By induction, φi has quantifier

rank greater than or equal to φj for i > j, so we need only verify the quantifier rank of φ2k−1. It is

equal to 1 plus the quantifier rank of
(

2k − 2
)

/2 = 2k−1 − 1, so by induction, it has rank < k.

(b) The statement is incorrect – it is sufficient that the condition hold for i < 2k − 1. Since we can

express that a gap is at least i for any i < 2k − 1 with an unnested formula with quantifier rank at

most k − 1, it is clear that the condition is necessary. To show that it is sufficient, we give a strategy

for ∃, given such a setup and show that it works by induction on k. The case k = 0 is trivial, since ∃

has already won. If ∀ chooses an element c in an interval (am, am+1) with s (am, am+1) < 2k − 1, then

by assumption, s (bm, bm+1) = s (am, am+1), and there is a natural choice for ∃, d, which preserves

0-equivalence and also the conditions on gaps, so (A, ā, c) ≈k−1

(

B, b̄, d
)

, by induction. If ∀ chooses

an element greater than all the ai’s, ∃ also has an easy choice of an element equally far from the bi’s,

and likewise for less than. It remains to consider the case when s (am, am+1) 6= s (bm, bm+1) and ∀

chooses an element in (am, am+1), c. We know that either s (am, c) ≥ 2k−1−1 or s (c, am+1) ≥ 2k−1−1

(possibly both). If it is both, then choose an element of (bm, bm+1) which is at least 2k−1−1 from both

bm and bm+1 – possible since s (bm, bm+1) ≥ 2k −1. If s (am, c) < 2k−1−1, then choose d in (bm, bm+1)

such that s (bm, d) = s (am, c), possible for the same reason. Note that s (c, am+1) > 2k−1 − 1, and

s (d, bm+1) > 2k−1−. The remaining case is similar. Now by induction, we are done, since the conditions

for k − 1 are satisfied.

3.3.6. Show that if G, G′, H and H ′ are groups with G 4 G′ and H 4 H ′, then G×H 4 G′ ×H ′.
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Any formula with parameters in G×H is easily seen to be equivalent to a conjunction of a formula

in G and a formula in H , so the Tarski-Vaught criterion shows that G×H 4 G′ ×H ′.

3.3.7. Show that there is no formula of first-order logic which expresses ‘〈a, b〉 is in the transitive

closure of R’, even on finite structures. (For infinite structures it is easy to show there is no such

formula.)

〈a, b〉 is in the transitive closure ofR iff there are c0, . . . , cm, for somem, withR (a, c0)∧
∧

i<mR (ci, ci+1)∧

R (cm, b). Suppose there were a first-order way to express this, say by ϕ (x, y). Let the quantifier rank

of ϕ be r. Then it is easy to see that in the model A with R = {(ci, ci+1) | i < 2r}∪{(di, di+1) | i < 2r},

(A, c0, d2r ) ≈r (A, c0, c2r ), but then ϕ must be true (or false) on both, which is impossible.

3.3.8*. Let A and B be structures of the same signature. Immerman’s pebble game on A, B of

length k with p pebbles is played as follows. Pebbles π0, . . . , πp−1, ρ0, . . . , ρp−1 are given. The game is

played like EFk[A,B], except that at each step, player ∀ must place one of the pebbles on his choice

(one of the πi if he chose from A, one of the ρi if he chose from B), then player ∃ must put the

corresponding ρi (πi) on her choice. (At the beginning the pebbles are not on any elements; later

in the game the players may have to move pebbles from one element to another.) The condition for

player ∃ to win is that after every step, if ā = (a0, . . . , ap−1) is the sequence of elements of A with

pebbles π0, . . . , πp−1 resting on them (where we ignore any pebbles not resting on an element), and

likewise b̄ = (b0, . . . , bp−1) the elements of B labelled by ρ0, . . . , ρp−1, then for every unnested atomic

φ (x0, . . . , xp−1), A |= φ (ā) ⇔ B |= φ
(

b̄
)

. Show that player ∃ has a winning strategy for this game if

and only if A and B agree on all first-order sentences which have quantifier rank ≤ k and use at most

p distinct variables.

[This problem doesn’t make sense to me. The pebble game should be weaker than EFk[A,B], not

stronger. I would think that “quantifier rank” should instead by “number of quantifiers,” but the

problem as stated that way is false.]

I assume that the first-order sentences in question are assumed to be unnested, since there is no

bound to their complexity if not. I assume the language is finite, because the problem is false otherwise

(models with infinitely many unary predicates, and every finite boolean combination realized). It is

easy to see that p ≥ k, so if ∃ can win the pebble game, clearly ∃ can win EFk[A,B], so A and B

agree on all unnested sentences of quantifier rank ≤ k, whatever their variables. Conversely, if A and

B agree on all unnested sentences with quantifier rank ≤ k and at most p variables, we show that ∃

has a winning strategy. Let
(

ā, b̄
)

be the play so far, with the condition for ∃ preserved so far. Let ā

have length m. As well, let A |= ψ (ā) ⇔ B |= ψ
(

b̄
)

for every formula ψ with quantifier rank at most

k −m and using at most p distinct variables (true at m = 0). Suppose ∀ takes a new pebble π and

puts it on some c ∈ A. Then, since there are only finitely many unnested formulas using at most p

distinct variables, we can conjunct all such formulas with quantifier rank at most k −m− 1 which āc
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satisfy, as ϕ (ā, c). By renaming the variables, we can assume that ϕ still has at most p variables. Then

A |= ∃xϕ (ā, x), so B |= ∃xϕ (ā, x), and so ∃ can choose the witness in B. This preserves the desired

properties. Now suppose ∀ moves an already placed pebble. The same argument applies. Thus, ∃ can

make k moves, and therefore win.

3.3.9. Let A and B be structures of the same signature. Show that A is back-and-forth equivalent to

B if and only if player ∃ has a winning strategy for the game EFω[A,B].

The forward direction is trivial. In the reverse, since every formula is equivalent to an unnested

formula, if EFω[A,B], then let ā, b̄ be the play. If (A, ā) 6≡0

(

B, b̄
)

, then there is some formula on

which they disagree. Translating that formula into unnested form, we have a contradiction.

4.1.1. Show that for every abstract group G there is a structure with domain G whose automorphism

group is isomorphic to G.

Let X be a set of generators of G, and for each x ∈ X let fx : G → G be the function g → g · x.

Consider the structure A with universe G and functions fx. Any element of G induces an automorphism

of A: if g ∈ G, then fx (ga) = gax = g (ax) = g (fxa). Moreover, let ϕ be any automorphism of A.

Suppose ϕ (a) = b. Since G is a group, there is a unique element g such that ga = b. Now consider

any c ∈ A. There is some d such that ad = c, so writing d as a product of generators x1, . . . , xn,

fxn
(. . . fx1

(a) . . .) = c. Then ϕ (c) = fxn
(. . . fx1

(b) . . .) = bd = gad = gc, so ϕ and g are identical.

4.1.2. Show that if the structure B is an expansion of A, then there is a continuous embedding

of Aut (B) into Aut (A). (b) Show that if B is a definitional expansion then this embedding is an

isomorphism.

Clearly any automorphism of B is an automorphism of A, so there is a natural embedding. This

embedding is trivially continuous, since the basic open sets are defined on tuples, and the universes of

B and A are the same.

(b) Let ϕ be any automorphism of A. Then ϕ is an automorphism of B, since if ϕ preserves

formulas, and every new symbol in B is defined by some formula. Thus, Aut (B) = Aut (A).

4.1.3. Show that if G is a group of permutations of a set Ω, ā is a tuple of elements of Ω and h is a

permutation of Ω, then G(hā) = h
(

G(ā)

)

h−1.

Let k be an element of G(hā). Then clearly h−1kh fixes ā, so h−1kh ∈ G(ā). Thus, h
(

h−1kh
)

h−1 ∈

h
(

G(ā)

)

h−1, so k ∈ h
(

G(ā)

)

h−1. Thus, G(hā) ⊆ h
(

G(ā)

)

h−1. Likewise, if k ∈ h
(

G(ā)

)

h−1, say

k = hgh−1, with g ∈ G(ā), then k (hā) = hgā = hā, so k ∈ G(hā).

4.1.4. Show that if G is an oligomorphic group of permutations of a set Ω, and X is a finite subset of

Ω, then G(X) is also oligomorphic.

Fix n. We must show that there are only finitely many orbits of n-tuples. Suppose not. Then there

must be infinitely many distinct orbits. Let {āi | i < ω} be representatives of these orbits. Let b̄ be a
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listing of X . Consider {b̄āi | i < ω}. Since G is oligomorphic, there must be infinitely many of these

elements in one orbit of G. Thus, we can assume that they are all in the same orbit. Then for each i,

there is a gi, gib̄ = b̄ and giā0 = gāi. But then gi ∈ G(X), and giā0 = āi, so in fact {āi | i < ω} has

only finitely many orbits in it, contradiction.

4.1.5. Suppose G is a subgroup of Sym (Ω). (a) Show that the topology on G is Hausdorff. (b) Show

that the basic open sets are exactly the right cosets of basic open subgroups; show that they are also

exactly the left cosets of basic open subgroups.

(a) Let g and h be distinct elements of G. Then for some a ∈ Ω, g (a) 6= h (a). Then S (a, ga) has

empty intersection with S (a, ha), and the first set contains g and the second h.

(b) Let S = S
(

ā, b̄
)

∩G be a basic open set. Let H = G(ā). If g, k ∈ S, then g−1k ∈ H , so k ∈ Hg,

so S is contained in a right coset of H . As well, if k ∈ Hg, then k = hg, for some h, so kā = b̄, so

k ∈ S
(

ā, b̄
)

, so the two are equal. Conversely, if H is a basic open subgroup of G, then H = G(ā), for

some ā. Let Hg be any right coset of H , and let gā = b̄. Then Hg = S, by the same argument. The

left coset argument just considers H = Gb̄ and gk−1 ∈ H .

4.1.6. Show that every open subgroup of Aut (A) is closed. Give an example to show that the converse

fails.

Let G be an open subgroup of Aut (A). Let h be an element such that for any ā in A, there is a

g ∈ G with hā = gā. Since G is open, it contains the pointwise stabilizer of some ā. Let g ∈ G be

such that gā = hā. Then consider k = g−1h. k ∈ S (ā, ā), so k ∈ G. Then gk = h, so h ∈ G. For the

converse, consider the trivial subgroup consisting of the identity permutation. It is certainly not open,

but it is closed.

4.1.7. Show that a subgroup of Aut (A) is open if and only if it has non-empty interior.

A subgroup G has non-empty interior if and only if it contains an open set. Then it contains a

basic open set, say S
(

ā, b̄
)

. But then it is easy to see that it contains S (ā, ā). Then G is easily a union

of cosets of S (ā, ā), and thus open. The converse is trivial.

4.1.8. Show that if A is an infinite structure then Aut (A) has a dense subgroup of cardinality at most

card (A).

We show that Sym (Ω) has a dense subgroup of cardinality ≤ |A|. Then, since Aut (A) is closed,

this subgroup will be dense in Aut (A). Note that there are |A|<ω = |A| basic open sets. Choose a

representative from each of them. We have a set of size |A|. Now, we are in the language of groups,

so there is a subgroup containing these elements and their inverses and closed under multiplication of

size |A|. This is the desired group.

4.1.9. Suppose K, H , and G are subgroups of Sym (Ω) with K a dense subgroup of H and H a dense

subgroup of G. Show that K is a dense subgroup of G.
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Let S
(

ā, b̄
)

be any basic open set with S
(

ā, b̄
)

∩G 6= ∅. Then since H is dense in G, there is some

h ∈ S
(

ā, b̄
)

∩H . Then since K is dense in H , there is some k ∈ S
(

ā, b̄
)

∩K. Then k ∈ S
(

ā, b̄
)

∩ G,

so K is dense in G.

4.1.10. Show that ifA is a countable structure which is Lω1ω-equivalent to some uncountable structure,

then A has 2ω automorphisms.

Let B be A together with constants naming every element of A. We wish to know how many

different expansions of A are isomorphic to B. Suppose there are less than 2ω. Then for some tuple ā

in A, for every atomic formula φ (x̄) with parameters from A, there is a formula ψ (x̄, ȳ) ∈ Lω1ω with

B |= ∀x̄ (φ (x̄) ↔ ψ (x̄, ā)), so A |= ∀x̄ (φ (x̄) ↔ ψ (x̄, ā)). Let ψa be the formula when φ is x = a, for

each a ∈ A. Then A |= ∀x
∨

a∈A ψa (x), and A |= ∃!xψa (x), for each a ∈ A. Both these statements are

Lω1ω. But any model satisfying them is countable. Thus, A is not Lω1ω-equivalent to any uncountable

model.

4.1.11. Show that if A is a countable structure and every orbit of Aut (A) on elements of A is finite,

then |Aut (A) | is either finite or 2ω.

If the number of orbits is finite, then clearly |Aut (A) | is finite. If the number of orbits is infinite,

then clearly no finite tuple can make A rigid, so there are 2ω automorphisms.

4.1.12. Let G be a closed subgroup of Sym (ω) and H any subgroup of G. (a) Show that the closure

of H in G is a subgroup of G. (b) Show that if (G : H) < 2ω then there is some tuple ā such that H(ā)

is a dense subgroup of G(ā).

(a) We must show that if g ∈ cl (H), then g−1 ∈ cl (H), and if g, k ∈ cl (H), then gk ∈ cl (H). For

the first claim, let ā be any tuple. Let b̄ = g−1ā. Since g ∈ cl (H), there is some h ∈ H with hb̄ = ā.

Then h−1ā = b̄. Thus, for any tuple, we can find an element of H agreeing with g−1 on that tuple,

so g−1 is in the closure of H . If g, k ∈ cl (H), consider gk and let ā be any tuple. There is h1 ∈ H

with h1ā = kā, and h2 ∈ H with h2 (h1ā) = g (h1ā). Then ghā = h2h1ā, so gh ∈ cl (H) as well. Thus,

cl (H) is a subgroup of G.

(b) We know that if (G : cl (H)) < 2ω, then there is some tuple ā such that G(ā) ⊆ cl (H). Since

cl (H) ⊇ H , if (G : H) < 2ω, then certainly (G : cl (H)) < 2w, so there is such a tuple. Then, since H

is dense in cl (H) and G(ā) is a subset of cl (H), H is dense in G(ā).

4.2.1. Show that if A is a relativised reduct of B and B is a relativised reduct of C, then A is a

relativised reduct of C.

Let L+ be the language of C, L′ the language of B, and L the language of A. Then for some

θ (x) ∈ L+, B is the substructure of C|L′ with domain θ (C), and for some ψ (x) ∈ L′, A is the

substructure of B|L with domain ψ (B). Then I claim A is the substructure of C|L with domain

θ∧ψ (C). Clearly the universe is correct. Given ā ∈ A, and R a relation in L, A |= R (ā) ↔ B |= R (ā),
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since A is a relativized reduct of B, and B |= R (ā) ↔ C |= R (ā), since B is a relativized reduct of C.

Thus, A |= R (ā) ↔ C |= R (ā). The same works for constants and functions, so the claim is proved.

4.2.2. Describe the admissibility formulas for relativisation to P .

For each constant symbol c in L, we have P (c). For each function symbol f in L, we have
∧

y∈x̄ P (y) → P (f (x̄)). There are no requirements for relation symbols.

4.2.3. Prove Corollary 4.2.2. [Let L and L+ be signatures with L ⊆ L+ and P a 1-ary relation

symbol in L+ \ L. If A and B are L+-structures such that A 4 B and AP is well-defined, then BP is

well-defined and AP 4 BP .]

From the previous problem, we know that BP is well-defined. Let AP |= φ (ā), with φ ∈ L. Then

A |= φP (ā), by Theorem 4.2.1. Thus, B |= φP (ā), so BP |= φ (ā), again by the theorem. The reverse

works as well, when the parameters come from AP . Thus, AP 4 BP .

4.2.4. In Example 1, write out a formula ψ (x, y, z) which expresses that the matrix z is the product

of the matrices x and y.

ψ (x, y, z) is

group (x) ∧ group (y) ∧ group (z) ∧
∧

1≤i,j≤n

coeffij (z) =

n
∑

k=1

coeffik (x) coeffkj (y)

4.2.5. Show that the structure (ω,+) is a relativised reduct of the ring of integers.

Let θ (x) be ∃y, z, u, v
(

y2 + z2 + u2 + v2 = x
)

. Since every non-negative integer is expressible as

the sum of four squares, and clearly only non-negative integers are, θ defines ω. Then, along with the

reduct of the language of rings to the language with just +, (ω,+) is a relativized reduct of the ring of

integers.

4.2.6. Show that if B is a relativized reduct of A, then there is an induced continuous homomorphism

h : Aut (A) → Aut (B).

Let ϕ be any automorphism of A. Then ϕ restricted to B is clearly an automorphism of B. This

restriction map is easily a homomorphism and continuous.

4.2.7. Show that the downward Löwenheim-Skolem theorem holds for PC∆ classes in the following

sense: if L ⊆ L+, U is a theory in L+ and K is the class of all L-reducts of models of U , then for

every structure A in K and every set X of elements of A, there is an elementary substructure of A of

cardinality ≤ |X |+ |L+| which contains all the elements of X .

I assume that this elementary substructure must also be in K, since otherwise the problem is trivial.

Let B be the model whose L-reduct A is. By the downward Löwenheim-Skolem theorem, given X in

A, we can find an elementary substructure of B, B′, containing X and with size ≤ |X | + |L+|. Then
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by Corollary 4.2.2, the L-reduct of B′ exists (so is in K), and is an elementary substructure of A, and

so is the desired structure, since it certainly contains X .

4.2.8. In Example 5, show that each ordering ζα is isomorphic to the reverse ordering (ζα)∗.

ζα has as elements sequences of integers of length α with only finitely many non-zero elements.

Given a sequence m = (mi | i < α), let −m = (−mi | i < α). Consider the map f : ζα → (ζα)∗ defined

by f (m) = −m. I claim f is an isomorphism. First, it is clear that f is bijective. Now, suppose m < n

in ζα. Then at the last coordinate at which m and n differ, mi < ni. Thus, −mi > −ni. Therefore,

in the ζα-ordering, f (m) > f (n), and thus in the reversed ordering, f (m) < f (n). Since f preserves

the only relation and is bijective, it is an isomorphism.

4.2.9*. Show that the class of multiplicative groups of real-closed fields is first-order axiomatisable.

I claim this is false. Since the theory of real-closed fields is complete, we can just look at R for

characteristics that the multiplicative group must satisfy. The elements of R with ∃y
(

y2 = x
)

form an

abelian, divisible, torsion-free group. Moreover, for every x there is a unique y such that y2 = x2, but

x 6= y, so the full group structure is definable from the positive part. But any two abelian, divisible,

torsion-free groups are elementarily equivalent, by an argument similar to the one in Exercise 7.4.11

(elimination of quantifiers), so if the class is first-order axiomatizable, then every abelian, torsion-free,

divisible group is the multiplicative group of a real-closed field. However, consider Q as an additive

group. Then Q fulfills the above conditions. Thus, Q must be isomorphic to the multiplicative group

of some real-closed field, R. Clearly 1 ∈ R maps to 0. Let 2 ∈ R map to a ∈ Q. Then pa/q maps to

the unique positive q-th root of 2p, for any p, q ∈ Z. But we have just mapped all of Q onto a proper

subset of R, since 3 was not hit. Thus, Q cannot be isomorphic to R.

4.2.10. Show that in Theorem 4.2.3(b) the condition that all structures in K are infinite can’t be

dropped.

Let L be the language of rings along with a unary relation, P . Let θ (x) be a formula which is

not r.e. in the natural numbers and has infinitely many realizations. Let T be PA without induction

along with the statements ∃!x∀y < x (Py ∧ ¬Px ∧ θ (x)) and ∀x > 0 (Px→ P (x− 1)). Then T can be

written as a single sentence. Let K be the class of relativized reducts of P on models of T to the empty

language. Then A ∈ K can have size any natural number such that θ (x). Let L′ be any language,

and ψ any sentence in L′. Whether ψ ⊢ ∃=nx (x = x) depends only on the symbols in ψ, so we can

assume L′ is finite. Then we have a recursive language and a recursive theory, so the consequences are

r.e. Thus, the set of sizes of models of ψ is r.e. But the set of sizes of models in K is not r.e., and so

K cannot be a reduct of models of ψ, and so is not PC.

4.3.1. Show that if Γ is an n-dimensional interpretation of L in K, then for every K-structure A for

which ΓA is defined, |ΓA| ≤ |A|n.
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Since ΓA is n-dimensional, the domain formula, ∂Γ (x̄) takes n arguments. Thus, |∂Γ (An) | ≤ |An|.

But ΓA has universe equivalence classes of ∂Γ, so |ΓA| ≤ |∂Γ (An) | ≤ |A|n.

4.3.2. Let A, B, and C be structures. Show that if B is interpretable in A and C is interpretable in

B then C is interpretable in A.

Let the languages of A, B, C be L+, L′, and L, respectively. Let C be interpretable in B with the

formula ∂C (x̄), a translation of φ (y1, . . . , yk) in L to φC (x̄1, . . . , x̄k) in L′ for every unnested atomic

formula of L, and a surjective map fC from n-tuples of B to elements of C. Let similar objects be

defined for the interpretation of B in A as an m-dimensional interpretation. Now, let ∂Γ (x̄0, . . . , x̄n−1),

which takes n m-tuples as arguments, be
∧

i<n ∂
B (x̄i) ∧ ∂C

B (x̄0, . . . , x̄n−1), let φ (y1, . . . , yk) in L an

atomic formula be mapped to φCB (x̄1,0, . . . , x̄1,n−1, . . . , x̄k,0, . . . , x̄k,n−1), with each x̄i,j an m-tuple,

and let fΓ : Amn → C be fΓ (ā0, . . . , ān−1) = fC (fB ā0, . . . , fB ān−1). Note that since fB is surjective

and fC is surjective, fΓ is surjective. We show that Γ is actually an interpretation of C in A by showing

that for any unnested atomic formula φ of L and all āi ∈ ∂Γ (Amn), C |= φ (fΓā1, . . . , fΓāk) ⇔ A |=

φΓ (ā1, . . . , āk). Write fΓāi as fC (fB āi,0, . . . , fB āi,n−1), with each āi,j anm-tuple, let bi,j = fBāi,j , and

let b̄i = (bi,0, . . . , bi,n−1). We know that C |= φ
(

fC b̄1, . . . , fC b̄k
)

⇔ B |= φC

(

b̄1, . . . , b̄k
)

. By Theorem

4.3.1, the interpretations extend to every formula, so B |= φC

(

b̄1, . . . , b̄k
)

⇔ C |= φCB (ā1, . . . , āk),

but φCB = φΓ, so the claim is proved.

4.3.3. Write down an interpretation Γ such that for every abelian group A, ΓA is the group A/5A.

By applying Γ to the inclusion Z → Q, show that Theorem 4.3.3(b) fails if we replace ∃+
1 by ∃1 and

‘homomorphisms’ by ‘embeddings’.

∂Γ is just x = x. The map fΓ : A→ ΓA just maps a to its coset of 5A. =Γ (x, y) is ∃z (x = y + 5z).

It is easy to see that fΓ (xy) = fΓxfΓy, since the cosets form a group. Since there are no relations, this

defines the interpretation. We show that this really is an interpretation. We have an unnested atomic

formula φ, which is then x = y. Let a1, a2 be any elements of A. Then ΓA |= fΓa1 = fΓa2 if and only

if a1 and a2 lie in the same coset of 5A – in other words, if there is some b ∈ 5A such that a1 = a2 + b.

But then, letting 5c = b, we have that ΓA |= fΓa1 = fΓa2 ↔ A |= ∃z (a1 = a2 + 5z), so we have an

interpretation.

Clearly every atomic formula and ∂Γ is ∃1, and Z embeds into Q. However, Z/5Z is not an

elementary substructure of Q/5Q – since Q is divisible, Q/5Q = {0}, but Z/5Z is certainly not trivial.

4.3.4. Let A be an L-structure with at least two elements. Show that the disjoint sum A + A (see

Exercise 3.2.8) is interpretable in A.

Let a and b be distinct elements of A. Let ∂Γ (x, y) be x = x∧ (y = a ∨ y = b). Let fΓ : ∂Γ

(

A2
)

→

A⊕ {a, b} be (x, y) → (x, y). Let ϕ (x̄) be any unnested atomic formula of L, the language of A. Let

ϕ̃ (x̄) be the translation of that formula into the language of A + A, L̃ (every constant and function
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symbol becomes a relation). Note that every atomic formula of L̃ is either of this form or is Px or Qx,

where P and Q are the unary predicates picking out each copy of A. If ϕ (x) is Px, define ϕΓ (y, z) as

z = a, and similarly for Q. For any other ϕ̃ (x1, . . . , xk), ϕ̃Γ (y1, z1, . . . , yk, zk) is
∧

i≤k zi = a∨
∧

i≤k zi =

b ∧ ϕ (y1, . . . , yk). It is easy to see that this is an interpretation.

4.3.5. Let G be a group and A a normal abelian subgroup of G such that G/A is finite. Show that G

is interpretable in A with parameters.

Let h1, . . . , hn be representatives of the finitely many cosets of G/A. Then any element of G

can be written as hia for some i ≤ n, a ∈ A, and also as h1a1 + . . . hnan with all but one ai 0.

Then ∂Γ (x1, . . . , xn) is
∨

i≤n

∧

j≤n,j 6=i xj = 0, the map ∂Γ (An) →
∑

i≤n hiai is the desired fΓ, and

=Γ (y1, . . . , yn, z1, . . . , zn) is true iff
∧

i≤n yi = zi. Since as before the map fΓ respects multiplication,

this is clearly an interpretation of G.

4.3.6. Show how a polynomial interpretation ∆ of L in K induces an interpretation Γ of L in K, in

which for every equation φ, φΓ is also an equation. Show that for every K-structure A, ΓA exists and

is a reduct of a definitional extension of A. (We write ∆A for ΓA.)

Our interpretation Γ has ∂Γ (x) just x = x, for each formula x = c in L, the formula x = c∆

in K, and for every formula F (x0, . . . , xm−1) = y in L, the formula F∆ (x0, . . . , xm−1) = y in K.

Then Γ is clearly an interpretation, and every equation is still an equation. It is easy to see that

the admissibility criteria are trivially satisfied (since c∆ is a closed term and functions have unique

valuations), so ΓA is always an L-structure when A is a K-structure. If we add all the symbols

in L to K to get K+, then A becomes a K+-structure, with all the symbols in L satisfying ∆ (so

F (x0, . . . , xm−1) = F∆ (x0, . . . , xm−1)). Thus, A as a K+-structure is a definitional expansion of A.

Then the L-reduct is just ΓA.

4.3.7. Write down a polynomial interpretation ∆ such that for every ring A, ∆A is the Lie ring of A.

Define [a, b] = ab− ba, addition to be the same as on A, and 0 and 1 the same.

4.3.8. Let A be a field and n a positive integer. (a) Let R be the set of all n-tuples ā = (a0, . . . , an−1)

of elements of A such that the polynomial Xn + an−1X
n−1 + . . .+ a1X + a0 is irreducible over A, and

if α is a root of this polynomial then the field A[α] is Galois over A. Show that R is ∅-definable over

A. (b) Let G be a finite group. Let RG be the set of all n-tuples as above, such that the Galois group

A[α]/A is isomorphic to G. Show that RG is also ∅-definable over A.

(a) Any element of A[α] can be written as
∑

i<n biα
i, for some bis in A. Addition and multiplication

are easy to define (αn = −
∑

i<n aiα
i), so we can interpret A[α] in A. Now, for A[α] to be Galois, it

must be normal and separable. Thus, for every element β of A[α], the minimal polynomial of β with

degree m ≤ n has exactly m roots in A[α]. This condition, for any β, is expressible: let c0, . . . , cn be

any n+1-tuple. Then
∑

i≤n ciX
i is irreducible iff there do not exist d0, . . . , dn and e0, . . . , en, with not
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all di = 0 (0 < i ≤ n), not all ei = 0 (0 < i ≤ n), such that for all i ≤ n, ci =
∑

j+k=i djek. Let ϕ (c̄)

be the first-order formula expressing this.
∑

i≤n ciβ
i = 0 is a condition that can be determined from

our interpretation of A[α] in A, so let ψ (c̄, x̄) be a first-order formula expressing this, where x̄ is an

n-tuple. The disjunction of the statements cm 6= 0 ∧
∧

m<i≤n ci = 0 ∧ ∃=mx
∑

i≤m cix
i = 0 says that

c̄ splits in A[α]. Let θ (c̄) say this. (ψ, and θ have parameters ā.) Thus, ∀x̄∃ȳ (ϕ (ȳ) ∧ ψ (ȳ, x̄) ∧ θ (ȳ))

says that A[α] is Galois. Thus, this formula along with ϕ (ā) defines R.

(b) If the Galois group A[α]/A is isomorphic to G, then we can consider G as a subgroup of Sym (n),

permuting the roots of α’s minimal polynomial. Note that any automorphism is determined by where

α goes, since every element is expressible using just α and elements of A, which are fixed. For each

automorphism, sending α to
∑

i<n biα
i, we form a function fb̄ taking an n-tuple interpreted as an

element of A[α] to its image under this automorphism. Note that, given b̄, fb̄ is definable. We can

then first-order say that fb̄ is surjective, and if c̄, d̄ are n-tuples (interpreted as elements of A[α]), then

fb̄c̄ + fb̄d̄ = fb̄

(

c̄+ d̄
)

, where + is the addition function for A[α]. Similarly for multiplication. Thus,

we can first-order express that b̄ defines an automorphism. Let m = |G|. Let diag (G|{f1, . . . , fm}) be

the diagram of G with the constants for the elements being f1, . . . , fm. Then, if m = |G|, we can say

∃b̄1 . . . b̄m
(

diag
(

G|{fb̄1 , . . . , fb̄m
}
)

∧
∧

i≤m b̄i is an automorphism
)

, and “there are exactly m b̄ such

that fb̄ is an automorphism.” Thus we can first-order express that the Galois group of A[α] over A is

G, and so define RG.

4.4.1. Show that if E is an equivalence relation on tuples in a set Iθ in Aeq and E is definable in

Aeq without parameters, then E is equivalent in a natural way to an equivalence relation on tuples of

elements of A which is definable in A without parameters. (So there is nothing to be gained by passing

to (Aeq)
eq

.)

Let ψ (x1, . . . , xk, y1, . . . , yk) define E. Let θ be an equivalence relation on n-tuples. We can make ψ

into a formula on A by considering ψ′ (z1,1, . . . , z1,n, . . . , zk,n, w1,1, . . . , wk,n) (with z̄i = (zi,1, . . . , zi,n),

and the same for w) to be
∧

i≤n (∂θ (z̄i) ∧ ∂θ (w̄i)) ∧ ψ (fθ z̄1, . . . , fθz̄n, fθw̄1, . . . , fθw̄n). Then we can

translate ψ′ into a formula of L, since its domain is A. Now ψ′ defines an equivalence relation on tuples

in A (two tuples are equivalent if their θ-classes are ψ-equivalent) which is the natural equivalent of E.

4.4.2. Let A be an L-structure and B a finite slice of Aeq. (a) Show that the restriction map g →

g| dom(A) defines an isomorphism from Aut (B) to Aut (A). (b) Show that if Aut (A) is oligomorphic,

then so is Aut (B).

Any automorphism of B, since A ⊆ B, with all its structure, must also be an automorphism of A.

Conversely, if ϕ is an automorphism of A, we show that we can extend it to a unique automorphism

of B. Given any Iθ in B, noting that since fθ is a homomorphism from An to Iθ, we can extend ϕ to

Iθ, so if ϕ (ā) = b̄, then ϕ (fθ (ā)) = fθ

(

b̄
)

. Note that this extension is unique, given ϕ. Doing this for

all Iθ gives us the unique automorphism of B extending A. Thus, g is an isomorphism.
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(b) As we see above, if ā is mapped to b̄ under some automorphism of A, then fθ (ā) is mapped

to fθ

(

b̄
)

under some automorphism of B. Thus, if there are finitely many orbits of n-tuples in A

then there are finitely many orbits of singletons in Iθ. Assume Aut (B) is not oligomorphic, so let

{b̄i | i < ω} be an infinite set of n-tuples all in different orbits. Since there are only finitely many Iθ’s

in B, we can find an infinite subset of ω, S, such that if i ∈ S, then b̄i (k) ∈ Iθ ↔ b̄j (k) ∈ Iθ, for every

Iθ in B, every i, j ∈ S, and k < n (where b̄i(k) is the k-th coordinate of b̄i). Now form {āi | i ∈ S} by,

for each coordinate of b̄i, choosing a tuple in A such that fθ applied to the tuple yields that coordinate

of b̄i. Then, since A is oligomorphic, there are only finitely many orbits that the āi’s go into, but

if āi and āj are in the same orbit, then certainly b̄i and b̄j are in the same orbit, since each fθ is a

homomorphism.

4.4.3. Let L be a first-order language and T a complete theory in L. Show that, if T has the

finite cover property (in Shelah’s [Keisler’s] sense), then there is a formula φ (x, ȳ) of L such that, for

arbitrarily large finite n, T implies that there are ā0, . . . , ān−1 for which ¬∃x
∧

i∈n φ (x, āi) holds, but

∃x
∧

i∈W φ (x, āi) holds for each proper subset W of n.

Since T has the finite cover property, there is some formula θ (x̄, w̄, z̄) such that there is no formula

ψ (z̄) such that for any ā, ψ (ā) implies that θ (x̄, w̄, ā) is an equivalence relation with infinitely many

classes. Thus, there must be āi for arbitrarily large i such that θ (x̄, ȳ, āi) has exactly i classes. Let

{b̄ij | j < i} be these representatives. Then, letting ȳ = w̄z̄, taking φ (x̄, ȳ) to be ¬θ (x̄, w̄, z̄) we have

the finite cover property for tuples with φ and witnesses {
(

b̄ij , āi

)

| j < i} for each i.

To reduce to the case ∃x we use an induction argument on the length of x̄. When it is 1, it is clear.

Suppose for some n > 1, we have the finite cover property for some ϕ, but for m < n, we do not.

For each φ (x0, . . . , xm−1, ȳ), we can find r, the least number such that if a set {φ
(

x̄, b̄i
)

| i < k} is

r-consistent, then it is consistent. Such an r exists: T does not have the finite cover property for m < n,

so there is some r such that for any k > r, for any k tuples, k − 1-consistency implies k-consistency.

But then r-consistency implies k-consistency.

By compactness, ϕ (x, c1, . . . , cm−1, ȳ) (with c1, . . . , cm new constants) has such an r, since for any

assignment of c1, . . . , cm there is such an r, and by compactness the r must be uniformly bounded. Fix

this r.

Now, for arbitrarily large n, we have Γn = {ϕ (x̄, āi) | i < n} which is n-inconsistent, but not n−1-

inconsistent. Let ψ (x1, . . . , xm, ȳ0, . . . , ȳr−1) be ∃x0

∧

i<r ϕ (x̄, ȳi). Let Γ∗
n = {ψ (x1, . . . , xm, ā0, . . . , ār−1) |

∀j < r (ϕ (x̄, āj) ∈ Γn)}. Then by induction there is some point, k, past which l-consistency implies

l+1-consistency of Γ∗
n. Note that l-consistency of Γn implies l/r-consistency of Γ∗

n, so if we take n > kr,

the n− 1-consistency of Γn will imply the consistency of Γ∗
n. Let c1, . . . , cm witness the consistency of

Γ∗
n. Now consider {ϕ (x0, c1, . . . , cm, ā) | ϕ (x̄, ā) ∈ Γn}. By choice of r, since this set is r-consistent (by

consistency of Γ∗
n), it is n-consistent, so we can find c0 a witness. Then ϕ (c̄, ā) for every ϕ (x̄, ā) ∈ Γn,

contradicting the n-inconsistency of Γ.
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4.4.5*. Show that ZFC has elimination of imaginaries. (b) Show that first-order Peano arithmetic

has uniform elimination of imaginaries.

Given an equivalence class in ZFC, θ (x̄, ā), we can let B be the set of all elements in this equiv-

alence class with minimal rank. Then let φ (x̄, Y ) be ∃ȳ ∈ Y (θ (x̄, ȳ)) ∧ ∀ȳ ∈ Y z̄ ∈ Y θ (ȳ, z̄) ∧ ∀ȳ ∈

Y z̄ (θ (z̄, ȳ) → rank (ȳ) < rank (z̄)). Clearly φ (x̄, B) defines the equivalence class, and B is the only

element which can be used.

(b) Let θ (x̄, ā) be an equivalence class. Let ≺ be the lexicographic ordering of tuples (it is definable).

PA proves that ∃x̄θ (x̄, ā)∧∀ȳ (ȳ ≺ x̄→ ¬θ (ȳ, ā)), where x̄ is an n-tuple. Then let φ (x̄, ȳ) be θ (x̄, ȳ)∧

∀z̄ (z̄ ≺ ȳ → ¬θ (ȳ, z̄)). Then letting b̄ be the minimal element of θ (x̄, ā) under this ordering, φ
(

x̄, b̄
)

is as desired.

4.4.6. Show that if V is a vector space of dimension at least 2 over a finite field of at least 3 elements,

then V doesn’t have elimination of imaginaries.

Let θ (x, y) express that y is a scalar multiple of x. It is first-order because the field is finite. Now,

fix any a, and consider θ (x, a). By the conditions of the problem, this set has at least two elements, and

yet does not contain all elements. Let φ
(

x, b̄
)

be any formula with paramaters in V . Let λ 6= 1 be in

the field, and consider the automorphism v → λv. The set θ (x, a) is unaltered by this automorphism,

so φ
(

x, b̄
)

must also be unaltered, so φ
(

x, λ
(

b̄
))

↔ φ
(

x, b̄
)

, but then b̄ is not the only solution to make

φ (x, ȳ) ↔ θ (x, a).

5.1.1. Show that each of the following is equivalent to the compactness theorem for first-order logic.

(a) For every theory T and sentence φ of a first-order language, if T ⊢ φ then for some finite U ⊆ T ,

U ⊢ φ. (b) For every theory T and sentence φ of a first-order languague, if T is equivalent to the theory

{φ} then T is equivalent to some finite subset of T . (c) For every first-order theory T , every tuple x̄ of

distinct variables and all sets Φ(x̄), Ψ(x̄) of first-order formulas if T ⊢ ∀x̄(
∧

Φ ↔
∨

Ψ) then there are

finite sets Φ′ ⊆ Φ and Ψ′ ⊆ Ψ such that T ⊢ ∀x̄(
∧

Φ′ ↔
∨

Ψ′).

(a) Proof from compactness: Let T ∗ = T ∪ {¬φ}. T ∗ has no model. Thus, some finite subset of it

has no model, U∗. Let U = U∗ \ {¬φ}. If U has no model, then clearly U ⊢ φ. If U has a model, then

every model of it must have φ true, so again U ⊢ φ. For the converse, let φ = ∃x(x 6= x).

(b) From compactness: Every model of T is a model of φ, and vice versa. By (a), some finite subset

of T proves φ. Thus, some finite subset of T proves T . Conversely, let φ = ∃x(n 6= x).

(c) From: Suppose that for every finite Ψ′ ⊆ Ψ, T 6⊢ ∀x̄(
∧

Φ →
∨

Ψ′). Denote by ¬Ψ′ the set

{¬ψ | ψ ∈ Ψ′}. Adding new constants, ā, to the language, then T ∪Φ(ā)∪¬Ψ′(ā)} is consistent. Thus,

every finite subset of T ∪ Φ(ā) ∪ ¬Ψ(ā) is consistent, so it has a model, in which the interpretation

of ā contradicts the hypothesis. Thus, our assumption was wrong, and for some finite Ψ′ ⊆ Ψ,

T ⊢ ∀x̄(
∧

Φ →
∨

Ψ′). Repeating this argument with finite subsets of Φ and ¬
∨

Ψ′(ā) shows that

some finite piece of Φ, Φ′, implies Ψ′. But then since
∨

Ψ′ →
∨

Ψ →
∧

Φ →
∧

Φ′, we are done.
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Conversely, given any first-order theory U , let T be the empty theory, Φ be U , and Ψ be ∃x(x 6= x).

5.1.2*. (a) Let L be a first-order language, T a theory in L and Φ a set of sentences of L. Suppose

that for all models A, B of T , if A |= φ ↔ B |= φ for each φ ∈ Φ, then A ≡ B. Show that every

sentence ψ of L is equivalent modulo T to a boolean combination ψ∗ of sentences in Φ. (b) Show

moreover that if L and T are recursive then ψ∗ can be effectively computed from ψ.

(a) Let Φ′ be all consequences of ψ in T which are boolean combinations of elements of Φ. Note

that Φ′ is closed under conjunctions. Consider T ∪ Φ′{¬ψ}. If this is inconsistent, then some finite

set is, so we have T ⊢ θ → ψ, for some θ ∈ Φ′. But since T ⊢ ψ → θ, by definition of Φ′, then

T ⊢ θ ↔ ψ, and we are done. So assume it is consistent, so we have a model, A. Let ΦA be all boolean

combinations of elements of Φ which are true in A. Note that ΦA is closed under conjunctions and

disjunctions. Consider T ∪ ΦA ∪ {ψ}. Assume it has no model. Then we have T ⊢ ψ → ¬θ, with

θ ∈ ΦA. But then ¬θ ∈ Ψ′, so A |= θ, which is impossible. Thus, T ∪ ΦA ∪ {ψ} has a model, B. For

every φ ∈ Φ, A |= φ ↔ B |= φ, so A ≡ B. But A |= ¬ψ and B |= ψ, contradiction. Thus we cannot

find A, and so we were done at the beginning.

(b) Φ must be recursive for ψ∗ to be effectively computed. Assuming that, make the following lists:

list the consequences of T ∪{ψ}, list the boolean combinations of Φ, and for each boolean combination

θ, list the consequences of T and θ. After some number of steps, we will have enumerated ψ∗ in the

consequences of T ∪{ψ} and in the boolean combinations of Φ, and will have listed ψ as a consequence

of ψ∗.

5.1.2. (Craig’s trick) In a recursive first-order language L let T be an r.e. theory. Show that T is

equivalent to a recursive theory T ∗.

Write ϕn for ϕ∧ . . .∧ϕ (n copies of ϕ). Since T is r.e., for each ϕ ∈ T , there is a finite computation

putting ϕ in T , which can be coded by a single natural number, n(ϕ). Consider T ∗ = {ϕn(ϕ) | ϕ ∈ T }.

Then determining if a sentence is in T ∗ is recursive.

5.1.3. Let L be a first-order language, δ a limit ordinal (for example ω) and (Ti | i < δ) an increasing

chain of theories in L, such that for every i < δ there is a model of Ti which is not a model of Ti+1.

Show that
⋃

i<δ Ti is not equivalent to a sentence of L.

Denote the union by T . Suppose it were, say to ϕ. Then by Exercise 5.1.1, we can find some finite

subset of T , U , equivalent to T . Since U is finite, all of its sentences have come by some finite stage in

the union, say i. Then U ⊆ Ti, so Ti implies T , so every model of Ti is a model of T . But let A be a

model of Ti which is not a model of Ti+1. Then A is not a model of T . Contradiction.

5.1.4. Show that none of the following classes is first-order definable (i.e. by a single sentence; see

section 2.2). (a) The class of infinite sets. (b) The class of torsion-free abelian groups. (c) The class of

algebraically closed fields.
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We use the previous problem. The class of infinite sets is defined by
⋃

i<ω Ti, with Ti = {∃>jx(x =

x) | j < i}. Each Ti clearly has a model which is not a model of Ti+1, so the previous problem applies.

Torsion-free abelian groups have theories Ti = {∀x(x 6= 0 → jx 6= 0) | 0 < j ≤ i} ∪ U (with U the

theory of abelian groups), and the desired models are Z/(i+ 1)Z. For the class of algebraically closed

fields, let A0 = Q. Given Ai, let k(i) be the least natural number such that Ai does not contain

a root of every polynomial of degree k(i) with coefficients in Ai. Adjoin roots of all polynomials of

degree k(i) with coefficients in Ai to get A
(0)
i , and repeat this countably many times to get Ai+1,

which has a root of every polynomial with degree k(i). Note that such k(i) always exists by Galois

theory, since there is always an irreducible polynomial with degree prime to {1, . . . , k(i − 1)}. Let

Ti = ∀y0 . . . yj−1∃x(xj + yj−1x
j−1 + · · · + y0 = 0) | 0 < j < k(i)} ∪ U (with U the theory of fields).

Then the previous exercise applies.

5.1.5. Let L be a first-order language and T a theory in L. (a) Suppose T has models of arbitrarily

high cardinalities; show that T has an infinite model. (b) Let φ(x) be a formula of L such that for

every n < ω, T has a model A with |φ(A)| ≥ n. Show that T has a model B for which φ(B) is infinite.

(a) Consider T ∪ {∃>nx(x = x) | n < ω}. By compactness, this is consistent, so T has an infinite

model.

(b) Consider T ∪ {∃>nx(φ(x)) | n < ω}.

5.1.6. Let L be the first-order language of fields and φ a sentence in L. Show that if φ is true in

every field of characteristic 0, then there is a positive integer m such that φ is true in every field of

characteristic ≥ m.

The theory of fields with characteristic 0 is axiomatized by the theory of fields, U , along with

{n 6= 0 | 0 < n < ω}. By compactness, since these axioms are inconsistent with ¬φ, some finite set is.

Let N be the maximum of the n’s appearing in the above formulas which are in this finite set. Then

m = N + 1 works.

5.1.7. (a) Let L be a first-order language, T a theory in L, and λ a cardinal ≥ |L|. Show that if

T is λ-categorical then T is complete. (b) Use (a) to give quick proofs of the completeness of (i) the

theory of (non-empty) dense linear orderings without endpoints and (ii) the theory of algebraically

closed fields of a fixed characteristic. Find two other nice examples.

(a) Suppose T is not complete. Let T1 and T2 be distinct completions. Let A1 |= T1, and A2 |= T2.

Since λ ≥ |L|, we can expand (shrink) A1 and A2 to have size λ. But they cannot be isomorphic, since

they are not even elementarily equivalent. Thus, T is not λ-categorical.

(b) Any countable dense linear order without endpoints is isomorphic to the rationals by an easy

back-and-forth argument. Any two algebraically closed fields of a fixed characteristic and cardinality

ω1 are isomorphic, again by a back-and-forth argument, since there are ω1 transcendentals in each.
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The theory of an injective unary function with no cycles is another example, since all models with

cardinality ω1 are isomorphic. The theory of an equivalence relation with infinitely many infinite

classes is ω-categorical, and thus complete.

5.2.1. Let A be an L-structure and B an extension of A. Show that (a)-(c) are equivalent. (a) B is

an elementary extension of A. (b) For every tuple ā of elements of A, tpA(ā) = tpB(ā). (c) For every

set X of elements of A and every n < ω, Sn(X ;A) = Sn(X ;B).

If B is an elementary extension of A, then for every ϕ(x̄) and every tuple ā in A, A |= ϕ(ā) ↔ B |=

ϕ(ā). Thus tpA(ā) = tpB(ā). If B is not an elementary extension of A, then for some ā in A, and some

ϕ, B |= ϕ(ā) and A |= ϕ(ā). Then tpA(ā) 6= tpB(b̄). For (a) implies (c), let p be any type in Sn(X ;B).

Since A 4 B, and p is realized in an elementary extension of B, p ∈ Sn(X ;A). If p ∈ Sn(X ;A), we

can use amalgamation from the next section, or consider any finite subset of p, to show that p is in

Sn(X ;B). (c) implies (b) follows since if ϕ(x̄) ∈ tpA(ā), ¬ϕ(x̄) ∈ tpB(ā), consider the set of 0-types

over ā. These are distinct, which impossible.

5.2.2. Let A be an L-structure, X a set of elements of A, ā a tuple of elements of A and e an

automorphism of A which fixes X pointwise. Show that ā and eā have the same complete type over

X with respect to A.

A |= ϕ(ā, b̄), with b̄ in X , if and only if A |= ϕ(eā, eb̄), since e is an automorphism. But eb̄ = b̄.

Thus A |= ϕ(ā, b̄) ↔ A |= ϕ(eā, b̄), so the types are the same.

5.2.3. Let A be the structure (Q, <) where Q is the set of rational numbers and < is the usual

ordering. Describe the complete 1-types over dom(A).

By quantifier elimination, the type is characterized once we know its ordering with respect to every

element of A. Thus, every complete 1-type corresponds to an element in the completion of Q – R.

5.2.4. Let A be an algebraically closed field and C a subfield of A; to save notation I write C also for

dom(C). (a) Show that two elements a, b of A have the same complete type over C if and only if they

have the same minimal polynomial over C. (b) Show that for all n, |Sn(C;A)| = ω + |C|.

(a) The forwards direction is obvious. A polynomial in a is 0 iff the minimal polynomial of a divides

it, and the same is true for b. Since a and b have the same minimal polynomial, they satisfy all the

same atomic formulas (which are all polynomial equations with coefficients in C), hence by quantifier

elimination, all formulas, so they have the same complete type.

(b) |Sn(C;A)| ≥ ω+ |C|, since the algebraic closure is always infinite, and there are C types realized

in C. There are ≤ |C|<ω polynomials over C, so |Sn(C;A)| ≤ |C|<ω = ω + C.

5.2.5. Let A be a vector space over a field k and X a set of elements of A. Describe Sn(X ;A) for

each n < ω, and show that |Sn(X ;A)| ≤ |k| + |X | + ω.
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By quantifier elimination, a type of a singleton, a, just expresses a as being in the span of X , or says

that a is not in the span of X . For an n-tuple, the same needs to be said of ai over X ∪{a0, . . . , ai−1},

for i < n. The number of elements in the span of X is ≤ |kX |<ω, and then there is one more type, so

|Sn(X ;A)| ≤ |kX |<ω + 1 = |k| + |X | + ω.

5.3.1. Let T be the theory of dense linear orderings without endpoints. Describe the heir-coheir

amalgams of models of T .

The heir-coheir amalgams of T are models A,B,C,D as in (3.3) with the following properties. In

D, if an interval (b1, b2) (with b1, b2 ∈ B ∪ {−∞,∞} contains elements of C, then it contains elements

of A. We show that any heir-coheir amalgam satisfies these properties, and that these properties assure

an heir-coheir amalgam.

Let A,B,C,D be models as in (3.3). Choose any ψ with D |= ψ(b̄, c̄), with b̄ in B, c̄ in C. By

quantifier elimination, ψ is a disjunction of conjunctions of quantifier-free formulas. Assume ψ is just

a conjunction. Then ψ defines a partial ordering on b̄ and c̄. Clearly, if A has elements ā satisfying the

partial ordering in place of c̄, then B |= ψ(b̄, ā). But that is assured precisely by the above conditions.

Conversely, if such elements ā always exist, then the above conditions are satisfied.

5.3.2. Let T be the theory of the linear ordering of the integers. Describe the heir-coheir amalgams

of models of T .

Let A,B,C,D be an heir-coheir amalgam. Choose any ψ withD |= ψ(b̄, c̄), as above. Using additive

notation, if we have c = b+n, for some n ∈ Z, then we know that b ∈ C and c ∈ B, so actually b, c ∈ A.

Thus, we know that in D, elements of B and C are never in the same Z-chain unless they are in A.

Now, by back-and-forth arguments on discrete linear orderings without endpoints, an elimination set

for this theory is the formulas {x − y = n | n ∈ Z} ∪ {x < y, x = y}. Since equations of the form

c = b + n mean that both of these are in A, all we have left is a linear ordering of the ci’s between

bi’s which have infinite gaps between them. So the requirements are that for b1, b2 ∈ B ∪ {−∞,∞},

if there is an element of C between them, then there is an element of A between them, and if b and c

are separated by a finite distance, then they are both in A.

5.3.3. Show that the following are equivalent, given the amalgam (3.3) above. (a) The amalgam is

heir-coheir. (b) For every tuple b̄ in B, tpD(b̄/C) is an heir of tpD(b̄/A). (c) For every tuple c̄ in C′,

tpD(c̄/B) is a coheir of tpD(c̄, A).

We go (a) to (b) to (c) to (a). Let ϕ(x̄, c̄) be any formula in tpD(b̄/C). Then D |= ϕ(b̄, c̄). Thus,

for some ā in A, B |= ϕ(b̄, ā), so D |= ϕ(b̄, ā). Now let ϕ(b̄, x̄) be any formula in tpD(c̄/B). Since

D |= ϕ(b̄, c̄), and tpD(b̄/C) is an heir of tpD(b̄/A), there is ā in A such that ϕ(ȳ, ā) ∈ tpD(b̄/A), but

then D |= ϕ(b̄, ā). Finally, let D |= ϕ(b̄, c̄). Since tpD(c̄/B) is a coheir of tpD(c̄/A), we can find ā such

that D |= ϕ(b̄, ā), but then B |= ϕ(b̄, ā).
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5.3.4. Let Φ(x̄) be a type over a set X with respect to a structure A. Show that the following are

equivalent. (a) Φ is algebraic. (b) Φ contains a formula φ such that A |= ∃≤nx̄φ(x̄) for some finite n.

(c) In every elementary extension of A, at most finitely many tuples realise Φ.

(a) implies (b): Suppose not. Adjoin ¬φ(x̄) to Φ for all algebraic formulas φ. By compactness, since

this collection cannot have a solution, some finite set is inconsistent. Thus, Φ implies some disjunction

of algebraic formulas, which is algebraic. (b) implies (a) and (c) trivially. For (c) implies (a), adjoin

infinitely many tuples of constants to the language, and add to the elementary diagram of A Φ(c̄i)

for every tuple c̄i, along with c̄i 6= c̄j , (i 6= j). This theory is inconsistent, so by compactness, some

finite piece is, so actually there is a uniform finite limit to the number of realizations of Φ, hence Φ is

algebraic.

5.3.5. Let L be a first-order language and A an L-structure. Suppose X is a set of elements of A and

ā is a tuple of elements of A, none of which are algebraic over A. Show that some elementary extension

B of A contains infinitely many pairwise disjoint tuples āi (i < ω) which all realise tpA(ā/X).

I assume the non-algebraicity of the elements is over X , not A. Let p(x̄) be the type of ā over

X . Append infinitely many tuples of constants 〈c̄i | i < ω〉 to the language, and consider eldiag(A) ∪
⋃

i<ω p(c̄i)∪
⋃

i<j<ω,k,l<n{c̄i(k) 6= c̄j(l)}, where ā is an n-tuple, and c̄i(k) is the k-th component of c̄i.

If this theory is satisfiable, we are done. If not, by compactness, we know that there are only finitely

many realizations of this type possible with all components distinct across realizations. If n = 1, then

this means that p is algebraic. Otherwise, go by induction on n. Let B, A 4 B, be a model with the

maximum number of pairwise-disjoint realizations, c̄0, . . . , c̄m−1. By induction, there is an elementary

extension of B with infinitely many pairwise disjoint realizations of the type of ā|(n−1) over X . Thus,

any realization, d̄, must have d̄(n− 1) in one of the c̄i’s. But then the type of ā(n− 1) is algebraic over

X in B, which is impossible.

5.3.6. Let B be an L-structure, C an elementary extension of B and X , Y sets of elements of B. (a)

Prove (3.8), (3.9) and (3.10). (b) Deduce that aclB aclB(X) = aclB(X).

(3.8) is X ⊆ aclB(X). For each a ∈ X , the formula x = a has exactly one solution. (3.9) is

Y ⊆ aclB(X) implies aclB(Y ) ⊆ aclB(X). Let a ∈ aclB(Y ). Let B |= ϕ(a, b̄), with b̄ in Y , and

B |= ∃≤nxϕ(x), for some n < ω. Since b̄ is in aclB(X), we know that for some ψ(ȳ) algebraic,

B |= ψ(b̄). Let there be m solutions to ψ(ȳ). Consider the formula ∃ȳ (ψ(ȳ) ∧ ∃≤nxϕ(x, ȳ) ∧ ϕ(x, ȳ)).

Then there are fewer than nm solutions to this formula, and a is one of them. (3.10) is “if B 4 C then

aclB(X) = aclC(X).” Let a ∈ aclB(X). Then for some ϕ(x) with parameters in X and some n < ω,

B |= ϕ(a) and B |= ∃=nxϕ(x). Since B 4 C, both of those statements are true in C, so a ∈ aclC(X).

The other way, if C |= ϕ(a) and C |= ∃=nxϕ(x), then the second statement is true in B, and so there

are n witnesses to it in B. If none of them are a, then C has n+ 1 witnesses, which is impossible. So

a must be one of the witnesses, so a ∈ aclB(X).
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(b) In (3.9), setting Y = aclB(X), we have aclB aclB(X) = aclB(X).

5.3.7. Let A be an L-structure and X a set of elements of A. Show that there is an elemen-

tary extension B of A with a descending sequence (Ci | i < ω) of elementary substructures such that

aclA(X) =
⋂

i<ω dom(Ci).

We apply Theorem 5.3.5, that if (B, ā) ≡ (C, ā), then there is an elementary extension D of

B and an elementary embedding g : C → D with gā = ā and dom(B) ∩ g(dom(C)) = aclB(ā).

Apply it to (A, ā) ≡ (A, ā), with ā a listing of X . We get A 4 A1, and a map g0 : A → A1 with

dom(A) ∩ g0(dom(A)) = aclA(X). Now we can look at two copies of A1, one with A elementarily

embedded in it through g0 and one with the same copy of A an elementary substructure. Then we

have (A1, dom(A)) ≡ (A1, g0(dom(A))), so (identifying g0(dom(A)) with dom(A)), we can find an

elementary extension A2 of A1 with an elementary embedding g1 : A1 → A2 extending g0. Continuing

this, we get a chain of models Ai. Set B =
⋃

i<ω Ai, and g =
⋃

i<ω gi. We know that g is an elementary

embedding. If a ∈ A \ aclA(X), then ga ∈ A1 \ A, since g0 maps every element not in aclA(X) to

a new element. The same argument shows that if a ∈ Ai \ Ai−1, then ga ∈ Ai+1 \ Ai. giB is an

elementary substructure of gi−1B, since g is an elementary embedding. Let Ci = giB. Consider

C =
⋂

i<ω dom(Ci). It is clear that aclA(X) ⊆ C. Assume we have a ∈ C \ aclA(X). Choose k the

least index such that we have a ∈ (C \ aclA(X)) ∩ Ai, with i = 0 if a ∈ A. Choose such a. Then

a = gk+1b, for some b ∈ B. Suppose the least index of the Ai’s containing b is l. Then by above,

l+ k + 1 = k. But this is impossible. Thus, a does not exist.

5.3.8. Let L be a first-order language and T a theory in L. Show that the following are equivalent.

(a) If A is a model of T , then the intersection of any two elementary substructures of A is again an

elementary substructure of A. (b) If A is a model of T , then the intersection of any family of elementary

substructures of A is again an elementary substructure of A. (c) If A is a model of T and (Bi | i < γ)

is a descending sequence of elementary substructures of A then the intersection of the Bi is again an

elementary substructure of A. (e) For any formula φ(x, ȳ) of L there are a formula ψ(x, ȳ) of L and an

integer n such that T ⊢ ∀xȳ(φ→ ∃x(φ ∧ ψ) ∧ ∃≤nxψ).

(b) to (a) and (b) to (c) are obvious. (a) to (d): Given A and X , as in the previous problem we

can embed A in A1 such that A ∩ g(A) = aclA(X). (c) to (d): By the previous problem, given any

X , we can find a descending sequence whose intersection is aclA(X). (e) to (d): We have A and X

a set of elements in A, and B = aclA(X). Consider φ(x, b̄), with b̄ any tuple in B. We must show a

solution exists in B if it does in A. Assume there is a solution in A, a. Instantiating (e) with a and b̄,

A |= ∃x(φ(x, b̄) ∧ ψ(x, b̄)) ∧ ∃≤nψ(x, b̄). Every solution to ψ(x, b̄) is in B, and at least one of them is

also a solution to φ(x, b̄). By Tarski-Vaught, B 4 A.

We now have (d) is implied by all the others. Here is (d) to (b). For every Bi 4 A, aclBi
(
⋂

j<γ Bj) =

aclA(
⋂

j<γ Bj). Thus, aclA(
⋂

j<γ Bj) =
⋂

i<γ Bj, so
⋂

i<γ Bj is an elementary substructure of A.
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All that is left is (d) to (e). Let φ(x, ȳ) be any formula. Then consider the sentences

T ∪ {∃xφ (x, c̄)} ∪ {¬ (∃x (φ (x, c̄) ∧ ψ (x, c̄)) ∧ ∃≤nxψ (x, c̄)) | n < ω, ψ ∈ L},

with c̄ a tuple of new constants. Suppose some finite set is inconsistent. Then T ⊢ ∃xφ (x, c̄) →
∨

i<m (∃x (φ (x, c̄) ∧ ψi (x, c̄)) ∧ ∃≤ni
xψi (x, c̄)). Elementary rearrangement gives us T |= ∀xȳ(φ →

(∃x(φ ∧
∨

i<m ψi ∧ ∃≤ni
xψi)). Replacing each ψi(x, ȳ) by θi = ψi(x, ȳ) ∧ ∃≤ni

xψ(x, ȳ), and letting

ξ =
∨

i<m θi and N =
∑

i<m ni, we see that T ⊢ ∀xȳ(φ→ ∃x(φ∧ξ)∧∃≤N xξ), so φ does not contradict

(e). Suppose then, that the collection is consistent, so we can find a model, A. Let c̄ interpret itself

in A. Let B = aclA(c̄). Consider ∃xφ(c̄) in B. If it is satisfied, then there is some witness, b, in B.

Then for some ψ, A |= φ (b, c̄) ∧ ψ(b, c̄) and A |= ∃≤nxψ(x, c̄) for some n. But this contradicts some

statement in our collection, which is impossible. Thus, φ did not contradict (e). Since no φ does, (d)

implies (e).

5.4.1. Let T be a theory in a first-order language L and Φ (x̄) (x̄) a set of formulas of L. Show that

the following are equivalent. (a) If A and B are models of T , A ⊆ B, ā is a sequence of elements of A

and A |=
∧

Φ (ā), then B |=
∧

Φ (ā). (b) Φ is equivalent modulto T to a set of ∃1 formulas of L.

(b) easily implies (a). For the reverse, we can assume that Φ is a set of sentences, by adjoining

constants ā. Let Ψ be the set of ∃1 consequences of T ∪Φ. Let B be a model of T ∪Ψ, and C a model

of T ∪ Φ. Then (C, ā) ⇛1 (B, ā), so there is an elementary extension D of B and an embedding g of

C into D. Then, since Φ goes up, D |= Φ, so B |= Φ, since B 4 D.

5.4.2. Let L be a first-order language and T a theory in L. Suppose A and B are models of T .

Show that the following are equivalent. (a) There is a model C of T such that both A and B can be

embedded in C. (b) φ and ψ are ∀1 sentences of L such that T ⊢ φ ∨ ψ, then either (i) A and B are

both models of φ, or (ii) A and B are both models of ψ.

(a) implies (b): Since C |= φ ∨ ψ, we must have C |= φ or C |= ψ. Then, since φ and ψ are ∀1,

they pass down to A and B. In the other direction, consider diag (A) ∪ diag (B) ∪ T . Assume it is

inconsistent. Then we have T ⊢ ¬ψ (ā)∨¬θ
(

b̄
)

, for some ψ ∈ diag (A), θ ∈ diag (B). By the lemma on

constants, T ⊢ ∀x̄¬ψ (x̄) ∨ ∀ȳ¬θ (ȳ). But A does not satisfy the first sentence, and B does not satisfy

the second, so they cannot agree.

5.4.3. Let L be a first-order language and let A0, A1 be L-structures with A0 ⊆ A1. Let n be a

positive integer. Show that A0 42n−1 A1 if and only if there is a chain A0 ⊆ · · · ⊆ A2n in which

Ai 4 Ai+2 for each i: [diagram omitted] where all the arrows are inclusions. [Each Ai is included in

Ai+1].

Suppose A 4m B with m > 0. Let diagm (B) be the set of all ∃m formulas with parameters from B.

Consider T = eldiag (A) ∪ diagm (B). We show T is consistent. Suppose not. Then φ (ā) ⊢ ¬ψ
(

ā, b̄
)

,
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where ā is in A and b̄ is in B \A, φ ∈ eldiag (A) and ψ ∈ diagm (B). Then φ (ā) ⊢ ∀ȳ¬ψ (ā, ȳ). Thus,

A |= ¬∃ȳψ (ā, ȳ), while B |= ∃ȳψ (ā, ȳ). But ψ is ∃m, so ∃ȳψ is ∃m, so A and B must agree on ∃ȳψ.

Thus, eldiag (A)∪diagm (B) is consistent. Let C realize it. Now consider any ∃m−1 ϕ, with C |= ϕ
(

b̄
)

,

for b̄ in B. If we had B |= ¬ϕ
(

b̄
)

, then since ¬ϕ is ∃m, we would have a contradiction. Thus, B |= ϕ
(

b̄
)

.

Thus, B 4n−1 C. Let the existence of C given A and B be the n-existential amalgamation theorem.

Now let A0 42n−1 A1 be given. Applying the n-existential amalgamation theorem back and forth,

we have A0 ⊆ · · · ⊆ A2n, with all conditions fulfilled.

Conversely, suppose we have A0, . . . , Ak (k = 2n) as above. We show by induction on n that

A0 4k−1 A1. When k = 0, this is is trivial. When k = 2, this is the fact that existential formulas are

preserved in superstructures (and then in elementary substructures). When k = i + 1, k > 2, write

any ϕ (z̄) which is ∃k as ∃x̄∀ȳθ (x̄, ȳ, z̄), where θ is ∃k−2. Assume A1 |= ϕ (ā) for some ā in A0. Let

b̄ in A1 witness x̄. Then A1 |= ∀ȳθ
(

b̄, ȳ, ā
)

. A1 4 A3, so A3 |= ∀ȳθ
(

b̄, ȳ, ā
)

. Then for every c̄ in A2,

A3 |= θ
(

b̄, c̄, ā
)

. By induction (for k − 1), A2 4k−2 A3, and b̄, c̄, ā are all in A2. Thus, A2 |= θ
(

ā, b̄, c̄
)

,

for every c̄ in A2, and so A2 |= ∀ȳθ (ā, ȳ, c̄). Then, since A0 4 A2, A0 |= ∃x̄∀ȳθ (x̄, ȳ, c̄), so A0 |= ϕ (ā).

5.4.4. Let L be a first-order language, T a theory in L, n an integer ≥ 2 and φ (x̄) a formula of L.

Show that the following are equivalent. (a) φ is equivalent modulo T to an ∀n formula ψ (x̄) of L. (b)

If A and B are models of T such that A 4n−1 B, and ā is a tuple of elements of A such that B |= φ (ā),

then A |= φ (ā). (c) φ is preserved in unions of 4n−2 chains of models of T .

(a) implies (b): Let φ (x̄) = ∀ȳθ (ȳ, x̄), with θ ∃n−1. Then if B |= φ (ā), for every choice of c̄ in A,

B |= θ (c̄, ā), so since A 4n−1 B, A |= θ (c̄, ā), so A |= ∀ȳθ (ȳ, ā), so A |= φ (ā). For the converse, make

φ into a sentence by appending ā to the language. Let Φ be the ∀n consequences of φ in T . Let A

be a model of T ∪ Φ. Consider U = diag∀,n−1 (A) ∪ {φ} ∪ T , where the first set is all ∀n−1 formulas

with coefficients in A which A satisfies. We show U has a model. If not, then T ⊢ φ (ā) → ¬ψ (ā, c̄),

with ψ (ā, c̄) a ∀n−1 formula true in A. But then T ⊢ φ (ā) → ∀ȳ¬ψ (ā, ȳ), and the last statement is

∀n. Then A must satisfy it by construction, but this is impossible. Thus, U has a model, B. But then

A 4n−1 B, and since B |= φ (ā), A |= φ (ā).

(a) implies (c): Suppose we have an 4n−2 chain, 〈Ai | i < γ〉, with Ai |= φ (ā). Let A =
⋃

i<γ Ai.

Suppose A |= ¬φ (ā). Then, writing φ as above, we have A |= ¬θ (c̄, ā), for some c̄ in A. But c̄ has

been added at some stage < γ, say k. Ak |= φ (ā), so Ak |= θ (c̄, ā). Thus, since θ (c̄, ā) = ∃z̄ψ (ā, c̄, z̄),

we can find d̄ in Ak such that Ak |= ψ
(

ā, c̄, d̄
)

. But ψ is ∀n−2. Thus, all we need to show is that

Ak 4n−2 A. Claim: if 〈Bi | i < γ〉 is an 4n-chain, then if B =
⋃

i<γ Bi, Bi 4n B. Clear for n = 0

(embeddings). If we know it for n, we have Bi 4n B, and we want Bi 4n+1 B. Let ϕ (ā) be any

formula with parameters from Bi with B |= ϕ (ā). Then B |= ∃x̄∀ȳθ (ā, x̄, ȳ), for some θ ∃n−1. Let

a witness be b̄, from Bj (if j < i, then just set j = i). Then B |= ∀ȳθ
(

ā, b̄, ȳ
)

. Then for all c̄ in Bj ,

B |= θ
(

ā, b̄, c̄
)

. Then, by induction, Bj |= θ
(

ā, b̄, c̄
)

, so Bj |= ∀yθ
(

ā, b̄, ȳ
)

, so Bj |= ϕ (ā), so since

Bi 4n Bj , Bi |= ϕ (ā). The claim is proven, and so is (a) to (c).
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For (c) to (a), atomize the theory at the ∃n−2 level. Then a 4n−2 chain in the old theory is just a

chain in the new theory. By the Chang-Loś-Suszko theorem, since φ is preserved in unions of chains,

it is ∀2 in this new theory. But then since each predicate in the equivalent formula can be replaced by

an ∃n−2 formula, the equivalent formula is ∀n in the old language. The same argument works for a

shorter proof of (a) implies (c).

5.4.5*. Let L be a first-order language and T a theory in L. Show that the following are equivalent.

(a) T is equivalent to a set of sentences of L of the form ∀x∃ȳφ (x, ȳ) with φ quantifier-free. (b) If A

is an L-structure and for every element a of A there is a substructure of A which contains a and is a

model of T , then A is a model of T .

(a) implies (b) easily. For (b) implies (a), T is certainly ∀2, since it is preserved in unions of

chains. Let A be a model of the ∀x∃ȳ consequences of T . We show that given any a ∈ A, there is

a substructure of A containing a which is a model of T . First, pass to an L+-saturated elementary

extension of A, so we may assume that A is L+-saturated. Let B0 = 〈a〉A. Suppose for some c̄ in

B0, and some ∀x̄∃ȳθ (x̄, ȳ) in T , for no b̄ in A do we have A |= θ
(

c̄, d̄
)

. But every element of c̄ is a

term of a, say t̄ (a), and certainly T ⊢ ∀x∃ȳθ (t̄ (x) , ȳ), but then A does too. Thus, no tuple in B0

contradicts T . Now we proceed by induction: given Bi, we wish to find Bi+1 ⊂ A with a witness to

θ (c̄, ȳ), with ∀x̄∃ȳθ a sentence in T , and c̄ a tuple in Bi. We assume that for every such θ and c̄ in Bi,

there is a witness in A. Fix θ. Let d̄ be a witness in A. Suppose, though, that for some θ1, and some

term t̄1
(

d̄, b̄
)

, with b̄ a tuple in Bi, θ1
(

t̄1
(

d̄, b̄
)

, z̄
)

has no witness in A. But since T |= ∀z̄∃w̄θ1 (z̄, w̄),

T |= ∀x̄ū∃ȳ∃w̄ (θ (x̄, ȳ) ∧ θ1 (t̄1 (ȳ, z̄) , ū)). Thus, with θ′ = θ ∧ θ1, we can find d̄′ which does not cause

problems for θ1 and t̄1. But perhaps there is a bad θ2 now. We can repeat this process for any finite

collection of θ’s. Thus, A |= ∃ȳ
(

θ (c̄, ȳ) ∧ ∀ū
∧

i<n ∃w̄iθi (t̄i (ȳ, ū) , w̄i)
)

, for any n < ω. But this is a

collection of formulas over a set of size |Bi|, so since A is |L|+-saturated, there is a witness, d̄, and

there is a witness in A for every θ
(

t̄
(

d̄, b̄
)

, ȳ
)

. Bi+1 = 〈Bi ∪ {d̄}〉A. We show now that the property

that any θ (c̄, ȳ) has a witness is preserved. If not, let c̄ be a counterexample. We can write c̄ as t̄
(

d̄, b̄
)

.

But then there is a witness by choice of d̄. Continue this process for γ = |L|+ steps. Let B =
⋃

i<γ Bi.

Then every θ and c̄ was taken care of at some point, and so B is a model of T lying in A. Thus, any

element of A is contained in a substructure of A which is a model of T , so A is a model of T .

5.4.6. Let L be a first-order language and T a theory in L. Show that the following are equivalent.

(a) Whenever A and B are models of T with A 4 B and A ⊆ C ⊆ B, then C is also a model of T . (b)

Whenever A and B are models of T with A 42 B, and A ⊆ C ⊆ B, then C is also a model of T . (c)

T is equivalent to a set of ∃2 sentences.

(c) implies (b) implies (a) trivially. It remains to show (a) implies (c). Let C be any model of

the ∃2 consequences of T , U . Let A be a model of T and the ∀2 consequences of Th (C). First we

show A exists. Suppose not. Then for some ϕ which is ∀2 in Th (C), T ⊢ ¬ϕ. But since C is a
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model of the ∃2 consequences, then ¬ϕ must be true in C – contradiction. Thus, A exists. Consider

U = diag∀,1 (A)∪Th (C). We show U is consistent. If not, we have Th (C) ⊢ ¬ψ (ā), where ψ (ā) is ∀1

and true in A. Then Th (C) ⊢ ∀x̄¬ψ (x̄). Now this statement is ∀2, but A satisfies every ∀2 sentence

in Th (C), so this is impossible. Thus, U has a model, C′. By existential amalgamation, we can find

B, A 4 B, and C′ embedding into B. Then C′ is a model of T , and since Th (C′) = Th (C), C is a

model of T .

5.4.7. Let T be a first-order theory, and suppose that whenever a model A of T has substructures B

and C which are also models of T with non-empty intersection, then B ∩C is also a model of T . Show

that T is equivalent to a ∀2 first-order theory.

We show that T is preserved under unions of chains. Let 〈Di | i < γ〉 be a chain of models of T ,

and let D =
⋃

i<γ Di. Then diag∀,1 (D) ∪ T is consistent, since every finite collection is in some large

enough Di, and ∀ statements go down to substructures. Thus there is a model of T , B, with D ⊆ B

and B ⇛1 D. Take a second copy of B \D and adjoin it to B. Thus, we have two copies of B sharing

D. Let B2 be the copy. Now, suppose U = T ∪ diag (B) ∪ diag (B2) ∪ {b 6= c | b ∈ B \D, c ∈ B2 \D}

is inconsistent. Then, by compactness, we can find ψ
(

b̄1, d̄
)

in diag (B) and θ
(

b̄2, d̄
)

in diag (B2) such

that T ⊢ ψ
(

b̄1, d̄
)

∧ θ
(

b̄2, d̄
)

→
∨

i,j<n b̄1 (i) = b̄2 (j), b̄1 (i) the i-th component of b̄1, and b̄1, b̄2 disjoint

from D. Now, note that B |= ψ
(

b̄1, d̄
)

∧ θ
(

b̄2, b̄
)

. Thus, B |= ∃x̄ȳ
(

ψ
(

x̄, d̄
)

∧ θ
(

ȳ, d̄
))

. Thus, since

B ⇛1 D, so does D. Let d̄2 be a witness for ȳ. Then B |= ψ
(

b̄1, d̄
)

∧ θ
(

d̄2, d̄
)

. Since B |= T , this

means that some component of b̄1 must be in D, since it is equal to some component of d̄2, but this

goes against our choice of b̄1. Thus, U is consistent. Let C be a model of U . Then B and B2 are

substructures of C which are models of T , so B ∩B2 = D is a model of T .

5.5.1. (Robinson’s joint consistency lemma.) Let L1 and L2 be first-order languages and L = L1∩L2.

Let T1 and T2 be consistent theories in L1 and L2 respectively, such that T1 ∩ T2 is a complete theory

in L. Show that T1 ∪ T2 is consistent.

Let B |= T1 and C |= T2. Then B|L ≡ C|L. By Theorem 5.5.1, we can find D an L1∪L2-structure,

such that B 4 D and g : C → D is an elementary embedding. Then D |= T1 ∪ T2.

5.5.2. Let L and L+ be first-order languages with L ⊆ L+, and let φ (x̄) be a formula of L+ and T a

theory in L+. Suppose that whenever A and B are models of T and f : A|L→ B|L is a homomorphism,

f preserves φ. Show that φ is equivalent modulo T to an ∃+
1 formula of L.

We can make φ a sentence by adding new constants, ā. Let Φ be the ∃+
1 -consequences in L of φ in

T . Let B be a model of T ∪Φ (ā). Let Ψ = {¬ψ | B |= ¬ψ (ā)∧ψ ∈ ∃+
1 ∧ψ ∈ L} – the negations of all

the positive existential formulas of L not true in B. Let C be a model of T ∪{φ (ā)}∪Φ (ā)∪Ψ (ā). It

is easy to see that this theory is consistent, so the model exists (since the disjunction of ∃+
1 formulas

is ∃+
1 ). Then (C|L, ā) ⇛

+
1 (B|L, ā), so we can take an L-elementary extension of B, D, and an L-

homomorphism from C to D. But since D |= T |L, we can find E, with E |= T , and D 4 E|L. Then the
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L-homomorphism from C to E shows that E |= φ (ā). By Beth’s definability theorem, φ is certainly

equivalent to an L-sentence, and so, since B|L 4 D 4 E|L, B |= φ (ā). Thus, φ is equivalent to its

∃+
1 -consequences in L.

5.5.3. Let L1 and L2 be first-order languages with L = L1 ∩L2. Suppose φ and ψ are sentences of L1

and L2 respectively, such that φ ⊢ ψ. Show that if every function or constant symbol of L1 is in L2,

and φ is an ∀1 sentence and ψ is an ∃1 sentence, then there is a quantifier-free sentence θ of L such

that φ ⊢ θ and θ ⊢ ψ.

Let Θ be the set of all quantifier-free sentences θ of L such that φ ⊢ θ. Consider any L2-structure

A which is a model of Θ. Let A0 be the substructure of A consisting only of closed terms. Note that

then A0 is an L1-structure as well. Now consider {φ} ∪ diagL1
(A0). Suppose it is inconsistent. Then

we have φ ⊢ ¬ψ, for ψ ∈ diagL1
(A0). But ¬ψ is quantifier-free (note that diag (A0) contains no new

symbols, since every element of A0 is a closed term), so this is impossible. Thus, we can find B |= φ

with A0 ⊆ B. Then, since φ is ∀1, A0 |= φ, so A0 |= ψ, and since ψ is ∃1, A |= ψ, so Θ implies ψ.

Then some finite subset does, so we are done.

5.5.4*. Let L1 and L2 be first-order languages with L = L1 ∩ L2. Suppose φ and ψ are sentences of

L1 and L2 respectively, such that φ ⊢ ψ. Show that if φ and ψ are both ∀1 sentences then there is an

∀1 sentence θ of L such that φ ⊢ θ and θ ⊢ ψ.

Let Θ be the set of all ∀1 sentences θ of L such that φ ⊢ θ. Let A0 be any L2-structure which is

a model of Θ. Let T be the L-consequences of φ. diag (A0|L) ∪ T is consistent: suppose not, so let

T ⊢ ψ (ā), with ψ (ā) ∈ diag (A|L). Then T ⊢ ∀x̄ψ (x̄). But then φ ⊢ ∀x̄ψ (x̄), so it must be true in A,

which is impossible. Thus, the set is consistent, so there is a model of it, B (an L-structure). Then

B 4 C|L, with C a model of φ. Now, we can trivially extend C to be an L2 structure containing A0:

fixing any element a in A0, for any function symbol f , fC
(

b̄
)

= fA0

(

b̄
)

if b̄ ⊆ A0, and fC
(

b̄
)

= a

otherwise. Relations in C are the same as in A0. Since C |= φ, C |= ψ, so as ψ is ∀1, A0 |= ψ. Thus,

Θ implies ψ.

5.5.5. Let L and L+ be first-order languages with L ⊆ L+, and suppose P is a 1-ary relation symbol

of L+. Let φ be a sentence of L+, and T a theory in L+ such that for every model A of T , PA is the

domain of a substructure A∗ of A|L. Suppose that whenever A and B are models of T with A |= φ

and f : A∗ → B∗ is a homomorphism, then B |= φ. Show that φ is equivalent modulo T to a sentence

of the form ∃y0 . . . yk−1

(
∧

i<k Pyi ∧ ψ (ȳ)
)

, where ψ is a positive quantifier-free formula of L.

Let sentences of the above form be ∃+
1 P sentences. Let Θ consist of all ∃+

1 P consequences of φ.

Let B be any model of T ∪ Θ. Let Φ consist of the negations of all ∃+
1 P sentences which are false in

B. Let A be a model of T ∪ Φ ∪ {φ}. A exists by the usual argument. We show that there exists

an elementary extension of B|L, C, such that there is a homomorphism from A∗ to C∗. Consider
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eldiag (B|L) ∪ diag+ (P (A)). Assume it is not consistent. Then for some positive quantifier-free θ (ā)

with ā in P (A), and some ϕ
(

b̄
)

∈ eldiag (B|L), ϕ ⊢ ¬θ (ā). But A |= ∃x̄
(

∧

y∈x̄ Py ∧ θ (x̄)
)

, so B does

too, which is impossible. Thus, the collection is consistent, so we have an elementary extension, C.

The interpretations of P (A) in C give the homomorphism. Then C can be elementarily embedded in

a model of T , D, so φ is true in D, hence in B.

5.5.6. Let L be the first-order language with relation symbols for ‘x is a son of y’, ‘x is a daughter

of y’, ‘x is a father of y’, ‘x is a mother of y’, ‘x is a grandparent of y’. Let T be a first-order theory

which reports the basi biological facts about these relations (e.g. that everybody has a unique mother,

nobody is both a son and a daughter, etc.). Show (a) in T , ‘son of’ is definable from ‘father of’, ‘mother

of’, and ‘daughter of’, (b) in T , ‘son of’ is not definable from ‘father of and ‘mother of’, (c) in T , ‘father

of’ is definable from ‘son of’ and ‘daughter of’, (d) in T , ‘mother of’ is not definable from ‘father of’

and ‘grandparent of’, (e) etc. ad lib.

Write each relation by its first initial, with xSy meaning x is a son of y. Then xSy ↔ ((yFx ∨ yMx) ∧ ¬xDy).

Consider the model of an only child with no children, a, and a father and mother, and let L be the

language with just M and F . Then clearly if this model satisfies T |L, then we can extend it to make a

a son or a daughter. Thus, S is not definable. xFy ↔ ((ySx ∨ yDx) ∧ ∃z (zFx)). Consider the model

of an only child, a father, a grandfather of the child who is not the father’s father, and two children

of the grandfather, neither of whom is a father. Then either one can be the mother, so mother is not

definable. Grandparent is definable from mother of and father of.

5.5.7. Let L be a first-order language, L+ the language got from L by adding one new relation symbol

R, and φ a sentence of L+. Suppose that every L-structure can be expanded in at most one way to

a model of φ. Show that there is a sentence θ of L such that an L-structure A is a model of θ if and

only if A can be expanded to a model of φ.

Let T = {φ}. Let A and B be any models of T with A|L = B|L. Then A = B as L+-structures.

Thus, A |= R (ā) ↔ B |= R (ā). Therefore, modulo φ, R is equivalent to a formula in L. Thus,

φ ⊢ ∀x̄ (R (x̄) ↔ ψ (x̄)), for some formula ψ in L. Let θ be φ with every R (x̄) in φ replaced by ψ (x̄).

Then certainly φ ⊢ θ. As well, if A |= θ, then the expansion RA = ψ (An) will make A into a model of

φ. Thus, the models which can be expanded to models of φ are precisely the models of θ.

5.5.8. Let T be a first-order theory. Show that the class of groups {G | G acts faithfully on some model of T }

is axiomatised by an ∀1 first-order theory in the language of groups.

As stated, this problem is silly. If the action of G need not preserve any characteristics of the

model, then let n be the size of the largest possible model of T . If n ≥ ω, then every group can act

faithfully. If n is finite, every group which can be embedded in Sn will act faithfully. There are finitely

many such groups, each of finite size, so they can be axiomatized by a ∀1 theory, enumerating all the

possibilities.
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If instead G is supposed to act automorphically on models of T , we interpret T in a new language,

with a relation symbol replacing each function and constant symbol, T relativized to a new unary

relation symbol, A, another new unary relation symbol picking out a group, G, a new ternary relation

symbol taking a group element and a structure element and mapping it to a structure element. We

also add a ternary relation on the group which is the group operation, a binary relation which is the

inverse, and a constant naming 1. Add axioms making this into what we want – G is a group, A

is a model of T , for any g ∈ G, and any relation on A, R (g (ā)) ↔ R (ā), and for any g 6= h ∈ G,

∃x (Ax ∧ gx 6= hx). Then G is clearly a PC′
∆ class, and also clearly closed under substructures. Thus,

it can be first-order axiomatized by ∀1 sentences as stated, by Theorem 5.5.5.

5.5.9. Assume it has been proved that every map on the plane, with finitely many countries, can be

coloured with just four colours so that two adjacent countries never have the same colour. Use the

compactness theorem to show that the same holds even when the map has infinitely many countries

(but each country has finitely many neighbours, of course).

Let A be any infinite map, consisting of its universe together with the symmetric antireflexive

binary relation B, denoting a shared border. Let T be the theory which says that P,Q,R, S are a

4-coloring of a map. We show that if any finite subset of A can be extended to a model of T , then A

can. T is ∀1, so closed under substructures. Thus, if we can show that diag (A) is consistent with T ,

then we are done. But since any finite piece of A is consistent with T , the whole is, by compactness.

Thus, T ∪ diag (A) has a model, and so A has a 4-coloring.

5.5.10. An ordered group is a group whose set of elements is linearly ordered in such a way that a < b

implies c · a < c · b and a · c < b · c for all elements a, b, c. A group is orderable if it can be made into

an ordered group by adding a suitable ordering. (a) Show that an orderable group can’t have elements

of finite order, except the identity. (b) Show from the structure theorem for finitely generated abelian

groups that every finitely generated torsion-free abelian group is orderable. (c) Using the compactness

theorem, show that if G is a group and every finitely generated subgroup of G is orderable, then G is

orderable. (d) Deduce that an abelian group is orderable if and only if it is torsion-free.

(a) Take any element not equal to 1, a. WLOG, say 1 < a. Then ai < ai+1, and so if an = 1, then

1 < a < a2 < · · · < an−1 < 1, which is impossible.

(b) Every finitely generated abelian group which is torsion-free must then be a direct sum of finitely

many copies of Z. Then the lexicographic ordering makes such a group ordered.

(c) If diag (G) is inconsistent with the order axioms, then some finite set is, so some finitely generated

subgroup of G is not orderable.

(d) Any torsion-free abelian group has every finitely generated subgroup orderable, and thus is

orderable. If it is not torsion-free, then by (a) it is not orderable.

5.6.1. Show that 6 → (3)22.
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Suppose each pair in [6]2 is colored either red or green. There must be at least 3 numbers a, b, c

such that (0, x) is the same for a, b, and c. Renumbering if necessary, we can assume that (0, 1), (0, 2),

and (0, 3) all have the same color, say red. Consider the colors of (1, 2), (1, 3), and (2, 3). If one of

them is red, say (1, 2), then (0, 1, 2) is the desired sequence. If they are all green, then (1, 2, 3) is the

desired sequence.

5.6.2. Let A be an infinite structure with finite relational signature. Suppose that for every n < ω,

all n-element substructures of A are isomorphic. Show that there is a linear ordering < such that

(dom (A) , <) is an indiscernible sequence.

Let 〈ai | i < γ〉 be an enumeration of A. Let N be the maximum arity of any symbol in L. By

Ramsey’s theorem, we can find an infinite subsequence, 〈bi | i < ω〉, such that any two increasing N -

tuples are isomorphic. Let B be the structure on the bi’s. Now consider T , the theory of an indiscernible

linear ordering on A, along with diag (A). Suppose T ∪diag (A) is inconsistent. Then T ⊢ ¬ψ (ā), with

c̄ = (c0, . . . , cm−1) some tuple in A and ψ ∈ diag (A). But since every tuple is isomorphic to every

other tuple, just choose b̄ =
(

bi0 , . . . , bim−1

)

satisfying ψ
(

b̄
)

. But B |= T , so clearly T is consistent with

ψ
(

b̄
)

, and thus ψ (ā). Therefore, some extension of A is a model of T . But this induces an indiscernible

ordering on A.

5.6.3. We say that a tree has finite branching if every element of the tree has at most finitely many

immediate successors. Prove König’s tree lemma: Every tree of height ω with finite branching has an

infinite branch.

Let A be a model of such a tree. Let B be a proper elementary extension, formed by adjoining a

constant, ∞, and adding the statements “∞ is not a successor of a” for every a ∈ A. We now construct

an infinite branch through A by following ∞. At each node which is below ∞, we choose the next

node based on which of the successors lies below ∞. A unique one of them must, since in A it is true

that if an element lies above a node it lies above exactly one of its successors, and there are finitely

many successors, so this property is first-order. The base node lies below ∞, since A proves that every

element lies above the base node. Thus, we can follow this procedure, and we never finish, because if

there is a node with no successors, then it cannot lie below ∞, so we will never go to it. This creates

an infinite branch.

5.6.4*. Prove that for all positive integers k, m, n there is a positive integer l such that if [l]k =

P0 ∪ . . .∪Pn−1 then there are i < n and a set X ⊆ l of cardinality at least m, such that [X ]k ⊆ Pi and

|X | ≥ min (X).

Prove it for a fixed k, m, n. Consider the tree where each node corresponds to the expression of

[l]k as P0 ∪ . . . ∪ Pn−1, for some l ∈ ω. Some partition of [l]k automatically induces a partition of [i]k

for [i]k, so the nodes corresponding to this partition are ordered in the obvious way. Since, given some
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partition of [l]k, there are only finitely many ways to extend it, we have a finitely-branching tree. It

clearly has height ω. Thus, we can find an infinite branch, which defines a partition of ω. Applying

Ramsey’s theorem to this partition, we find an infinite set X contained in Pi, for some i. Let a be the

least element in X . Take l large enough that |{x ∈ X | x < l}| ≥ a. Then l works.

6.1.1. Suppose K is a class of L-structures, and K contains a structure which is embeddable in every

structure in K. Show that if K has the AP then K has the JEP too.

Let A and B be any structures in K. Let C be the structure which can embed into any structures

in K. By AP, there is a structure D into which A and B embed, preserving the embeddings of C into

A and B. But then A and B embed into some structure, so K has JEP.

6.1.2. Let p be a prime, and let K be the class of all finite fields of characteristic p. Show that K

has HP, JEP, and AP, and that the Fräıssé limit of K is the algebraic closure of the prime field of

characteristic p.

HP is clear (assuming the language has the inverse operation). Given A, and B and C extending A,

all in K, we can regard A, B, and C as subfields of the algebraic closure of the finite p-field, F̄p, since

they are all algebraic extensions of Fp. Now consider the field generated by B ∪ C in F̄p. It is finite,

since for every element in B ∪ C, only finitely many powers need be considered when constructing

terms, so there are finitely many terms which are composed entirely of multiplication operations, and

every term can be written as a sum with at most one copy of each such multiplicative term. Thus,

B ∪C is contained in a finite field, necessarily with characteristic p, and thus in K. JEP follows since

Fp is embedded in every such field. Clearly F̄p has age at least K, and the argument above shows

that actually it has age K (since every element is algebraic over Fp). Thus, all we need show is that

it is weakly homogeneous. But the theory of algebraically closed fields with characteristic p eliminates

quantifiers, so if A embeds in F̄p as C, and B ⊇ A, then the quantifier-free type of A in F̄p actually

specifies that such B exists, and so a copy of it must exist over C, so B can be mapped to that copy.

6.1.3. Let K be the class of finitely generated torsion-free abelian groups. Show that K has HP, JEP,

and AP, and that the Fräıssé limit of K is the direct sum of countably many copies of the additive

group of rationals.

HP is trivial (assuming the language has the inverse operation). By embedding any A into the

direct sum of finitely many copies of Q (which is done easily, element by element of the generating

set), we can regard B and C as both being in some Q ⊕ · · · ⊕ Q. Then the group containing B ∪ C

is finitely generated, and so amalgamates B and C over A. JEP follows since {0} embeds into every

group in K. ω×Q certainly has age K, so the question is whether it is weakly homogeneous. But the

theory of divisible, torsion-free abelian groups eliminates quantifiers, so it is.

6.1.4. Let K be the class of finite boolean algebras. Show that K has HP, JEP, and AP, and that the
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Fräıssé limit of K is the countable atomless boolean algebra.

HP clearly holds. Regarding models in K as embedded in the countable atomless boolean algebra,

we can amalgamate, and JEP follows since {0, 1} embeds into every boolean algebra. The countable

atomless boolean algebra has age K and the theory eliminates quantifiers, so it is weakly homogeneous.

6.1.5. Show that the abelian group Z(4) ⊕
⊕

i<ω Z(2) is not elementarily equivalent to any ultraho-

mogeneous structure.

This group, denoted G, satisfies the sentences ∃x(x + x = 0 ∧ ∃y(y + y = x)) and ∃x(x + x =

0 ∧ ∄y(y + y = x)). Let H be any other group elementarily equivalent to G, and let a and b witness

the two sentences in H . Then a and b generate subgroups, and the one defined by a can certainly be

mapped onto the one defined by b, but not extended to a/2. Thus, H is not weakly homogeneous.

6.1.6. Let L be a finite signature with no function symbols, and K a class of finite L-structures which

has HP, JEP and AP. Show that there is a first-order theory T in L such that (a) the countable models

of T are exactly the countable ultrahomogeneous structures of age K, and (b) every sentence in T is

either ∀1 or of the form ∀x̄∃yφ(x̄, y) where φ is quantifier-free.

For every (A, ā) in K (ā lists the elements of A, necessarily finite), let θā(x̄) assert that x̄ has the

same quantifier-free type as ā. Since L is finite, θ is first-order. For every (A, ā) and (B, āb) in K,

we have the formula ψā,b(x̄, y), defined as θā(x̄) → θāb(x̄, y). Note that for a fixed length tuple, there

are only finitely many possible θs and ψs. Let T be the collection ∀x̄
∨

ā∈K, |ā|=n θā(x̄), where x̄ is an

n-tuple, and 0 < n < ω, along with ∀x̄∃yψāb(x̄, y), for each āb ∈ K. The second set ensures that any

element of K is in the age of any model of T , since we can build it up element by element. The first set

ensures that every finitely generated substructure is in K. Thus, the age of any model of T is precisely

K. Finally, the second set gives weak homogeneity.

6.2.1. Let X be an infinite subset of ω \ {0} such that ω \X is infinite, and let Y be the set of odd

positive integers. Show that player ∃ has a winning strategy for the game G(π,X) if and only if she

has one for G(π, Y ).

Suppose ∃ has a winning strategy for G(π,X). We define how ∃ moves inductively, in a way that at

stage 2i+ 1, ∃ is always faced by a position she may be faced at for some x ∈ X . Here is the strategy:

given a position, find an index in X at which it may occur in G(π,X) (we show below that this is

possible). This index can be followed by at most finitely many elements of X , since ω \X is infinite.

Let ∃’s move be the conjunction of all of ∃’s moves at these indices. We now show that every position

∃ faces in G(π, Y ) is faced in G(π,X). Clearly at stage 1 this is true. Suppose it is not true for some

i > 0. Let m = 2i+ 1 be the least such value. Then at stage m, ∃ may have a position she is never

faced with in G(π,X). However, at stage m − 2, ∃ could be faced with such a position in G(π,X).

Let a be an index where this position could occur in G(π,X). If a+ 1 /∈ X , then clearly the position
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at m could occur in G(π,X). Thus, a + 1 ∈ X . But then ∃ made the move at m − 2 that was the

conjunction of moves at a, a+ 1, . . . , b− 1, for some b > a. Then the position at m could certainly be

the position at the next element of X – if ∀ makes the same move on b that he did on m− 1, and then

makes trivial moves until the next element of X . Thus, the position at m is possible, and so ∃ can

always move. It is easy to see that T+ for any game played according to this strategy will be T+ for

some game played in G(π,X), so it will have π.

For the reverse, the argument is similar, except that when ∃ is faced by multiple ∀ moves, she

should consider what would happen if ∀ did the conjunction of those moves in G(π, Y ).

6.2.2. Show that if πi is an enforceable property for each i < ω, then the property
∧

i<ω πi (which

T+ has if it has all the properties πi) is also enforceable.

Partition ω into infinitely many infinite sets. Assign each set to one ∃, in charge of a specific πi.

Since each πi is enforceable, each ∃ can ensure that its πi is satisfied, so all of them are (there is no ∀

here – each ∃ is playing against the others).

6.2.3. Let T be a complete theory in a countable first-order language L, and suppose that T has

infinite models. Show that T has a countable model A such that for every tuple ā of elements of A

there is a formula φ(x̄) with A |= φ(ā) such that either (a) φ supports a complete type over T , or (b)

no principal complete type over T contains φ.

We repeat the proof of the omitting types theorem, except that there will be experts who assure

that every n-tuple fulfills the above conditions. The construction goes as before, except that now

condition (2.4)n reads (For each n < ω:) Ensure that for every n-tuple c̄ of distinct witnesses, either

ψ(c̄), where ψ is not in any principal type, or ϕ(c̄), where ϕ generates some principal type. It remains

to be shown that expert En can do this. She lists all n-tuples of distinct elements, 〈c̄i | i ∈ Y 〉, where

Y is her subset of ω. She is given Ti−1, a finite set of sentences, with i ∈ Y . If T ∪ Ti−1 is consistent

with ϕ(c̄i), for some ϕ ∈ L generating a principal type of T , she sets Ti = Ti−1 ∪ {ϕ(c̄i)}. If not, she

writes
∧

Ti−1 as a sentence χ(c̄i, d̄), where χ(x̄, ȳ) is in L, and d̄ lists the distinct witnesses which occur

in Ti−1 but not in c̄i. Then T ∪ {ϕ(c̄i)} ⊢ ¬χ(c̄i, d̄), for every ϕ generating a principal type. By the

lemma on constants, T ∪{ϕ(c̄i)} ⊢ ∀ȳ¬χ(c̄i, ȳ). Then no principal type contains the formula ∃ȳχ(x̄, ȳ),

but T ∪ Ti ⊢ ∃ȳχ(x̄, ȳ), so set Ti = Ti−1.

At the end of this procedure, every distinct n-tuple (and hence every n-tuple) c̄ will satisfy either a

principal type or a formula which is in no principal type. Thus, the canonical model formed from the

c’s is the desired one.

6.2.4. (a) Let A be a finite or countable structure of countable signature. Show that A is atomic

if and only if A is a prime model of Th(A). (b) Deduce that any two prime models of a countable

complete theory are isomorphic.
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(a) If A is atomic, A is easily embeddable in any model of Th(A), just by enumerating all of

A as 〈ai | i < ω〉, and then mapping an to the realization of tp(an/(a0, . . . , an−1)) over the image

of (a0, . . . , an−1), which is possible since every type is principal, and thus realized in every model.

Inversely, assume A is not atomic, so it has some tuple ā whose type is non-principal. By the omitting

types theorem, find a model omitting this type. Then ā cannot be mapped into this model, so A is

not prime.

(b) By Theorem 6.2.3, if A and B are atomic, they are back-and-forth equivalent. Thus, if they

are countable, they are isomorphic. Any prime model of a countable theory is countable, and by (a) is

thus atomic. Thus, any two prime models are isomorphic.

6.2.5. (a) Show that if A and B are elementarily equivalent ω-saturated structures then A is back-and-

forth equivalent to B. (b) Show that if A is ω-saturated and B is a countable structure elementarily

equivalent to A, then B is elementarily embeddable in A.

(a) Given a position (ā, b̄), with (A, ā) ≡ (B, b̄), and any choice c ∈ A, choose an element d in B

such that (A, āc) ≡ (B, b̄d). Then certainly (A, āc) ≡0 (B, b̄d).

(b) Play a back-and-forth game where ∀ chooses only from B, to exhaustion. ∃ can always match

the move, by ω-saturation. In the end, (B, b̄) ≡ (A, ā) where b̄ lists the elements of B, and ā are ∃’s

moves, since any formula mentions only finitely many elements. Then B embeds in A as ā.

6.2.6. Show that the following are equivalent, for any countable complete first-order theory T with

infinite models. (a) T has a countable ω-saturated model. (b) T has a countable model A such that

every countable model of T is elementarily embeddable in A. (c) For every n < ω, Sn(T ) is at most

countable.

(a) implies (b) and (c) trivially. (b) implies (c) since any model realizes only countably many types,

so if Sn(T ) was not countable for some n, take a model realizing an n-type not in the model specified

by (b). We can shrink this model to be countable. Then it is not embeddable in the model of (b).

(c) implies (a) since we can realize all types: let A be any countable model of T . List the n-types

of A over every tuple ā as 〈pi(x̄, āi) | i < ω〉 (there are countably many because otherwise for some n

and some m the length of ā, there are uncountably many m + n-types). We can realize p0 over A in

some countable elementary extension. Then realize the next consistent type over that. After ω steps,

we have realized all consistent types over every ā in A, and we are still countable. Now perform this

operation ω times, and let B be the resulting model. We are still countable, and now if (B, b̄) ≡ (C, c̄),

and d ∈ C, consider p(x, c̄) = tp(d/c̄). We know that b̄ came at some finite stage, so at some point, we

had p(x, b̄) = pi(x, āi), for some i. If a realization was found, then we are done. If no realization was

found, then p(x, b̄) was inconsistent, and so for some ψ(x, b̄) ∈ p(x, b̄), we have B |= ∀x¬ψ(x, b̄). But

since (B, b̄) ≡ (C, c̄), C |= ∀x¬ψ(x, c̄), which is impossible. So a realization was found.

6.2.7. Give an example of a countable first-order theory which has a countable prime model but no
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countable ω-saturated model.

Let T be the theory of the rationals as a linear ordering, with every element named. Then the

prime model is just the rationals, but since there are uncountably many 1-types, there is no countable

ω-saturated model.

6.2.8*. Let L be a countable first-order language, T a theory in L, and Φ(x̄) and Ψ(ȳ) sets of formulas

of L. Show that (a) implies (b): (a) for every formula σ(x̄, ȳ) of L there is a formula ψ(ȳ) in Ψ such that

for all φ1(x̄), . . . , φn(x̄) in Φ, if T∪{∃x̄ȳ(σ∧φ1∧. . .∧φn)} has a model then T∪{∃x̄ȳ(σ∧φ1∧. . .∧φn∧¬ψ)}

has a model; (b) T has a model which realises Φ and omits Ψ.

If Φ = {x 6= x} and Ψ = {x 6= x}, then (a) holds but T ∪ Φ is inconsistent, so the statement is

incorrect. Assume then that T ∪Φ is consistent. We build a model in the same way as with the omitting

types theorem, except that now we start with a tuple ā with Φ(ā), and (2.4) is just one task, as follows.

We are at stage i, given Ti−1, consistent with T ∪ Φ(ā), and have a listing of tuples, 〈c̄j | j < ω〉.

Write Ti−1 as a sentence, χ(c̄i, ā, d̄). Let σ(x̄, ȳ) = ∃z̄χ(x̄, ȳ, z̄). We show that T ∪Φ(ā)∪ {σ(c̄i, ā), ψ},

where ψ is the associated formula for σ from (a), is consistent. Assume not. Then we can choose a

finite set, φ1, . . . , φn in Φ by compactness such that T ∪ {φ1(ā), . . . , φn(ā), σ(c̄i, ā)} ⊢ ψ. We know

that T ∪ {∃x̄ȳ(σ ∧ φ1 ∧ . . . ∧ φn)} has a model, since Ti−1 ∪ T ∪ Φ(ā) has a model. But then by (a)

T ∪{∃x̄ȳ(σ∧φ1 ∧ . . .∧φn ∧¬ψ)} has a model, contradicting the proof of ψ from σ and the φi’s. Thus,

the assumption was wrong, so we can set Ti = Ti−1∪{¬ψ(c̄i)}. The resulting theory’s canonical model

will omit Ψ and realize Φ.

6.2.9. Show that the theory T of Example 1 is complete as follows. If A is a model of T and s is a

subset of ω, |Φs(A)| is the number of elements of A which realise Φs. (a) Show that if A is a model of

T , then A is determined up to isomorphism by the cardinals |Φs(A)| (s ⊆ ω). (b) Show that if s ⊆ ω

and A is a model of T of cardinality ≤ 2ω, then A has an elementary extension B of cardinality 2ω with

|Φs(B)| = 2ω. (c) By iterating (b), show that every model of T of cardinality ≤ 2ω has an elementary

extension C of cardinality 2ω with |Φs(C)| = 2ω for each s ⊆ ω.

(a) Suppose A and B are two models of T with the same values for |Φs(−)|, for all s ⊆ ω. Then

just map every element in Φs(A) onto Φs(B), for each s ⊆ ω. This is an embedding, since every unary

relation is preserved, and onto, thus an isomorphism.

(b) Given a model A, T asserts that, for any n, and any finite subsets d of s and e of ω \ s, there

are > n elements in
∧

i∈d Pi(x) ∧
∧

i/∈d Pi(x). By compactness, if we add 2ω many constants to the

language, and the statements that they are all in Φs, then eldiag(A) along with this new theory is

satisfiable in some elementary extension of A, with size 2ω, since that is the size of the language.

(c) Iterating (b), we add 2ω · 2ω constants, so the language still has size 2ω, and we have an

elementary extension in which every class has size 2ω. Then, given A and B any models of size ≤ 2ω,

A 4 C for some model of this kind, and B 4 D, but C ∼= D, so A ≡ C ≡ D ≡ B.
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6.3.1. Show that if A is an infinite structure and ā is a tuple of elements of A, then Th(A, ā) is

ω-categorical if and only if Th(A) is ω-categorical.

Suppose for some n, Sn(Th(A, ā)) is infinite. Then, if m is the length of ā, the number of m + n-

types over Th(A) is infinite, since every n-type extends to an m + n-type where the type of the first

m variables is that of ā, so Th(A) is not ω-categorical. Inversely, if Sn(Th(A, ā)) is finite for every n,

then since every n-type of Th(A) is contained in at least one n-type of Th(A, ā), Sn(Th(A)) is finite.

6.3.2. Show that if A is a countable structure, then A is ω-categorical if and only if for every tuple of

elements of A, the number of orbits of Aut(A, ā) on single elements of A is finite.

If A is ω-categorical, then (A, ā) is ω-categorical for any tuple ā, so there are only finitely many

1-types over ā, so the number of orbits of Aut(A, ā) is finite. Conversely, if the number of orbits of

Aut(A, ā) is finite, there are only finitely many 1-types realized over ā. We show that there are only

finitely many n-types for every n realized over ∅, by induction. Suppose we have the result for n.

Let c̄0, . . . , c̄m be the realizations of the n-types. Then Aut(A, c̄i) has finitely many orbits, so there

are finitely many 1-types over c̄i, and thus finitely many n + 1-types, since an n + 1-type can be

decomposed into an n-type and a 1-type over that. Then Aut(A) has finitely many orbits for each n,

so A is ω-categorical.

6.3.3*. Show that if T is a first-order theory with countable models, then T is ω-categorical if and

only if all the models of T are pairwise back-and-forth equivalent.

For the reverse, if A and B are countable models of T , then they are back-and-forth equivalent,

then since they are countable, they are isomorphic. Since this is true for all countable models, all

countable models of T are isomorphic, so T is ω-categorical.

The statement is not true in the forwards direction. Let L be a language with ω1 constants,

〈ci | i < ω〉. Let T be the theory which says that if c0 = c1, then every constant is equal to c0, and

if c0 6= c1, then every constant is distinct. (It has sentences of the form c0 = c1 → ci = c0 and

ci = cj → c0 = c1 for i, j < ω1.) As well, let T say that there are infinitely many elements not equal to

c0. Then T has precisely 1 countable model, but clearly that model is not back-and-forth equivalent

to the model in which every ci is distinct. I thus assume that L is countable.

If T is ω-categorical and L is countable, then T is necessarily complete. Sn(T ) is finite for every n,

and every type is realized in every model. Let A and B be any models of T . We give a strategy for ∃

that preserves (A, ā) ≡ (B, b̄). Note that if the tuples have length 0, then A ≡ B, since T is complete.

Suppose ā and b̄ have been chosen, with the desired property. Let ∀ choose c from A. Passing to a

countable elementary substructure of A, A′, containing āc and a countable elementary substructure of

B, B′, containing b̄, we can find d in B′ such that (A′, āc) ≡ (B′, b̄d), and passing upwards preserves

the equivalence, since the substructures are elementary.
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6.3.4. Let T be a complete and countable first-order theory. Show that T is ω-categorical if and only

if every countable model of T is atomic.

If T is ω-categorical, then every type in T is principal, and so every model realizes only principal

types. Thus, the unique countable model realizes only principal types, and thus is atomic. Any

two countable atomic models are easily isomorphic, by back-and-forth (Theorem 6.2.3) coupled with

countability. Thus, T is ω-categorical.

6.3.5. Give an example of an ω-categorical first-order theory T such that no skolemisation of T is

ω-categorical.

Consider the theory of dense linear orders without endpoints. Then any skolemization must include

a function f(x) such that x < f(x). Now there are infinitely many 2-types, with pn(x, y) containing

the formula fn(x) < y < fn+1(x), for each n. Thus, since there are infinitely many 2-types, this

skolemization cannot be ω-categorical.

6.3.6. Let B be a countable boolean algebra. Show that B is ω-categorical if and only if B has finitely

many atoms.

Let B have infinitely many atoms. Consider the set of formulas which say ‘x contains at least n

atoms,’ for each n < ω. By compactness, this set can be extended to a type. Assume B is ω-categorical,

so there are only finitely many possible extensions, all principal. Let ϕ0, . . . , ϕn−1 generate these types.

Then the above collection implies
∨

i<n ϕ(x). But then some finite subset does, so one of the ϕi’s is

true given only finitely many of the above formulas, and so does not generate the type. Thus, our

assumption was wrong, and B is not ω-categorical.

Inversely, let B have finitely many atoms. I claim that for any D with D |= Th(B), B and D are

back-and-forth equivalent. Certainly B ≡0 D. I show that this is a winning position for ∃. For a single

element, these are the characteristics we look at: (i) how many atoms are contained in the element,

(ii) if it contains the complement of the union of the atoms (C), and if not, (iii) if it intersects C. Now

suppose we have played the game to (B, b̄) and (D, d̄), with the above 3 properties the same for every

element of the boolean algebras generated by b̄ and d̄ (denoted B(b̄) and B(d̄) respectively). Clearly

(B, b̄) ≡0 (D, d̄). We show that we can extend these sequences one more. Let ∀ choose a ∈ B. Now,

each atom in B(b̄a) is, for some Q an atom in B(b̄) , either Q∩a or Q∩a∗. For each Q an atom in B(b̄)

, let R be the corresponding atom in B(d̄) . Let Q ∩ a contain k atoms, and Q ∩ a∗ contain m atoms.

Then Q contains k+m atoms, and so R contains k+m atoms as well. Let c′ be the union of k of them.

If Q ∩ a contains C, then Q does, and thus R does. Let c′′ = c′ ∪ C. If Q ∩ a ∩ C is non-empty, but

Q∩a∗∩C is empty, let c′′ = c′ ∪ (R∩C). If Q∩a∩C is empty, let c′′ = c. Otherwise, if Q∩a∩C and

Q∩ a∗ ∩C are both non-empty, then since C has no atoms in it, and R ∩C is non-empty, we can find

E ⊂ R ∩ C such that E∗ ∩R ∩ C 6= 0. Set c′′ = c′ ∪ E. Now, let c be the union of all the c′′ elements

constructed in this way. It is easy to see that (B, b̄, a) and (D, d̄, c) have the above 3 properties the
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same for every element of the boolean algebras. Thus, ∃ can win the back-and-forth game, and so D

and B (if countable) are isomorphic. Thus, B is ω-categorical.

6.4.1. Show that if M is a countable ω-categorical structure, then there is a definitional expansion of

M which is ultrahomogeneous.

We can atomize Th(M), so that it is quantifier-free. Let M ′ be the definitional expansion of M

from this. Then if A and B are two finitely-generated substructure of M ′ and there is an isomorphism

of A onto B, then letting ā be a tuple of generators of A, the image of ā, b̄, generates B and moreover ā

and b̄ have the same type (not just quantifier-free type) over M . But then there is an automorphism of

M taking ā to b̄, by Corollary 6.3.3. Since M ′ is a definitional expansion, this automorphism extends

to M ′.

6.4.2. Let L be the first-order language whose signature consists of one 2-ary relation symbol R. For

each integer n ≥ 2, let An be the L-structure with domain n, such that An |= ¬R(i, j) iff i + 1 ≡ j

(mod n). If S is any infinite subset of ω, we write JS for the class {An | n ∈ S} and KS for the class

of all finite L-structure C such that no structure in JS is embeddable in C. Show (a) for each infinite

S ⊆ ω, the class KS has HP, JEP, and AP, and is uniformly locally finite, (b) if S and S′ are distinct

infinite subsets of ω then the Fräıssé limits of KS and KS′ are non-isomorphic countable ω-categorical

L-structures, (c) if L is the signature with one binary relation symbol, there are continuum many

non-isomorphic ultrahomogeneous ω-categorical structures of signature L.

(a) Let an “n-cycle” be a set of n elements, a1, . . . , an, such that ¬R(ai, ai + 1), for i < n, and

¬R(an, a1), and for every other pair, R holds. Note that an L-structure C is in KS if it has no n-cycles

for n ∈ S. Clearly HP holds. If A and B are finite structures in KS , first map B to a structure which

has no elements in common with A, B′ (if m = max(A), add m to every element of B). Now the union

of A and B′ still has no n-cycles for n ∈ S, so we have JEP. Finally, if B and C both contain A and

have no n-cycles, again take images of B and C so that B \A and C \A have no elements in common.

Then consider their union, D. Any n-cycle must contain elements of B \ A and C \ A, but for any

a, b in an n-cycle, either R(a, b) or R(b, a), and this cannot be true, since ¬R(a, b) for all a ∈ B \ A

and b ∈ C \A. Thus, AP holds. KS is uniformly locally finite since there are no function or constant

symbols.

(b) WLOG, let n ∈ S \ S′. Then the Fräıssé limit of KS contains no n-cycle, while the Fräıssé

limit of KS′ does, since an n-cycle is a finitely-generated structure into which no element of JS′ can

be embedded. It is clear that any isomorphism preserves n-cycles, so KS and KS′ are not isomorphic.

They are countable since they are Fräıssé limits, and ω-categorical since Theorem 6.4.1 applies.

(c) Since there are continuum many distinct infinite sets S, and each gives a different countable ω-

categorical L-structure, there are continuum many distinct ω-categorical L-structures in the language

with one binary relation.
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6.4.3. We define a graph A on the set of vertices {ci | i < ω} as follows. When i < j, first write j as

a sum of distinct powers of 2, and then make ci adjacent to cj iff 2i occurs in this sum. Show that A

is the random graph.

We show that if X and Y are disjoint finite sets of vertices in A, then there is an element not in

the union which is adjacent to all vertices in X and none in Y . This suffices, by Theorem 6.4.4. Let

a1, . . . , an be the indices of the vertices in X , and b1, . . . , bm those in Y . Let m = max(b1, . . . , bm).

Consider the vertex whose index is 2a1 + . . . 2an + 2m+1. Then for each i ≤ n, this vertex connects to

every vertex indexed by ai, but for each i ≤ m, not to any indexed by bi, since it has index greater

than the index of bi, and yet does not have 2bi in its expansion.

6.4.4. Show that if Γ is the random graph, then the vertices of Γ can be listed as {vi | i < ω} in such

a way that for each i, vi is joined to vi+1.

Let 〈ai | i < ω〉 be any enumeration of the random graph. We build the desired enumeration

〈vi | i < ω〉 by induction. Set v0 = a0. Given v0, . . . , vi, let a be the first element in our enumeration

of Γ not in this list. If a is connected to vi, set vi+1 = a. Otherwise, choose vi+1 by setting X =

{v0, . . . , vi, a}, and Y = ∅, and applying Theorem 6.4.4. Then at the next stage, we will have vi+2 = a.

In this way, every element is enumerated, and the desired property holds.

6.4.5. Show that if the set of vertices of the random graph Γ is partitioned into finitely many sets Xi

(i < n), then there is some i < n such that the restriction of Γ to Xi is isomorphic to Γ.

We go through the Xi’s one by one. If Xi is not the random graph, then we can find Yi and Zi,

finite and disjoint, such that every element in Xi is not connected to some element in Yi or is connected

to some element in Zi. Now let Y =
⋃

i<n Yi and Z =
⋃

i<n Zi. Since Γ is the random graph, we can

find some x disjoint from Z and connected to Y . But x cannot be in any Xi – contradiction. Thus,

some Xi is the random graph.

6.4.6. Let n be an integer ≥ 3 and let Kn be the class of finite graphs which do not have Kn as a

subgraph. (a) Show that Kn has HP, JEP and AP. (b) If Γn is the Fräıssé limit of Kn, show that Γn

is the unique countable graph with the following two properties: (i) every finite subgraph of Γn is in

Kn, and (ii) if X and Y are disjoint finite sets of vertices of Γn, and Kn−1 is not embeddable in the

restriction of Γn to X , then there is a vertex in Γn which is joined to every vertex in X and to no

vertex in Y .

(a) HP is obvious. For JEP, just take the union. Any embedding of Kn into the union must lie

entirely on one side, since any two points from different structures are disconnected. For AP, embed

the two graphs so that they have no points in common besides the base structure, and so that there

are no new connections. Then, again, an embedding of Kn must lie entirely on one side.

(b) Γn certainly has (i). If X and Y are as in (ii) for Γn, then consider X ∪ Y with the new point

v, connected to every point in X and to no point in Y . This graph is certainly in Kn, since Kn was
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not embeddable in X ∪ Y , and if it is embeddable in X ∪ Y ∪ {v}, then Kn−1 must be embeddable in

X . Thus, it is in Γn. Any A with (i) has age at most Kn. Suppose the age of A is not Kn. Let G be

the smallest (by number of vertices) graph in Kn which is not a substructure of A (thus non-empty).

Take g any element of G. Let X be the vertices connected to g in G, and Y the vertices not connected

to g. Since G ∈ Kn, Kn−1 does not embed into X . By minimality of G, X ∪ Y can be embedded into

A. But then A fails (ii). So the age of A is Kn. We now show A is weakly homogeneous, which proves

that it is isomorphic to Γn. Let B ∈ Kn be a finite graph embedding into A, and let C ∈ Kn extend

B. We need only show the result if |C \B| = 1. Let X be the set of vertices in B which are connected

to the extra element of C, and Y the vertices which are not. Then by (ii) for A, we can find an element

in A which is connected to those in the image of X , and not in the image of Y , so we can extend the

embedding to the extra element of C, and hence on and on. Thus, A is weakly homogeneous.

6.4.7. Show that the zero-one law (Theorem 6.4.6) still holds if the signature L is empty.

Suppose L is empty, and let ϕ be a sentence. Let n be the number of quantifiers in ϕ. Suppose

there is a structure A such that A |= ϕ and |A| > n. Let C be any L-structure with |C| > |A|.

Suppose C |= ¬ϕ. Play a back-and-forth game. ∀ chooses from whichever structure there is an ∃

quantifier outermost. ∃ makes the choice to preserve the quantifier-free type, which is just whether or

not elements are equal. Since there are more than n elements, and only n choices to be made, ∃ can

always do this. But at the end of the game, we have tuples which have the same quantifier-free type

but differ on a quantifier-free formula. This is impossible, so C |= ϕ. Thus, if there is a structure A

with |A| > n and A |= ϕ, then ϕ is true in all structures with size ≥ |A|, and thus limn→∞ µn(φ) = 1.

Otherwise, considering ϕ’s negation, it is clear that the limit is 0.

6.4.8. Let L be the first-order language whose signature consists of one 1-ary function symbol F .

Show that limn→∞ µn(∀xF (x) 6= x) = 1/e.

The chances that, in a structure with n elements, any element will be mapped to itself is 1/n. The

chance that no element will be mapped to itself is (n− 1)n/nn. The limit of this expression as n goes

to infinity is 1/e.

6.4.9. Prove that if 0 < k < 1 and m is a positive integer, then nm · kn → 0 as n→ ∞.

Let k = 1/(1+p). If n > 2(m+1), then consider the binomial expansion of (1+p)n. The (m+1)-th

term is n!pm+1/(m+ 1)!(n−m− 1)!. Since n > 2(m+ 1), n!/(n−m− 1)! > (n/2)m+1, so (1 + p)n >

(n/2)m+1pm+1/(m + 1)!. So nmkn < (nm(m + 1)!)/((n/2)m+1pm+1) = (2m+1(m + 1)!/pm+1)/n, and

therefore goes to 0 as n→ ∞.

7.1.1*. Let L be a signature with just finitely many symbols, and J an at most countable set of finite

(NB: not just finitely generated) L-structures which has HP, JEP, and AP. Let K be the class of all
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L-structures whose age is ⊆ J. If C is a finite or countable structure in K, show that C is existentially

closed in K if and only if C is the Fräıssé limit of J.

The Fräıssé limit is e.c. in K by Example 2. We show the converse, that if a structure is e.c. in

K, then it is weakly homogeneous (and thus ultrahomogeneous). Let C be e.c. in K with age J. Let

D be the Fräıssé limit of J. We are given A ⊂ B ⊂ C, and an embedding f : A → C, and we wish to

extend f to B. List the elements of A as ā, and let B \A = b̄. Since every finitely generated structure

in C is actually finite, there are only finitely many distinct elements in C of the form t(āb̄), where t is

a term of L. Thus, the complete quantifier-free type of b̄ over ā need involve only finitely many terms.

Then, since L is finite, the complete quantifier-free type of b̄ over ā is a single formula, θ(x̄, ā). Now,

C embeds in D, and thus A embeds in D, say through g. Therefore, we can extend g to B. Thus,

D |= ∃x̄θ(x̄, g(f(ā))). Taking g(C), the isomorphic image of C, this means that we can find b̄′ ∈ g(C)

with g(C) |= θ(b̄′, g(ā)). Then f(b̄) = g−1(b̄′) extends f .

7.1.2. Show that there is a unique countable e.c. linear ordering, namely the ordering of the rationals.

Clearly, any e.c. linear ordering is dense and has no endpoints. But any countable dense linear

ordering without endpoints is isomorphic to the rationals by a back-and-forth argument.

7.1.3. Show (a) an e.c. integral domain is the same thing as an e.c. field, (b) an e.c. field is never an

e.c. commutative ring.

(a) The formula ∃y(xy = 1) ensures that any e.c. integral domain is a field (and is realized in the

field of fractions of the integral domain). Then, since the class of integral domains contains the class

of fields, a structure which is e.c. in the class of integral domains must be e.c. in the class of fields.

If we have an e.c. field contained in an integral domain, we can extend the integral domain to an e.c.

integral domain, which is a field. Thus, considering integral domains adds no new ∃1 formulas that the

e.c. field needs to satisfy.

(b) The formula ∃y(y 6= 0 ∧ y2 = 0) ensures that no e.c. field is an e.c. commutative ring. If K is

the e.c. field, K[x]/(x2) extends K to a commutative ring satisfying this statement.

7.1.4. Show that if A is an e.c. abelian group, then A is divisible and has infinitely many p-ary direct

summands for each prime p.

The formulas ϕn(x), ∃y(ny = x) ensures that any e.c. abelian group is divisible. We show they

are satisfiable. Assume that for some G and some a ∈ G, 0 < n < ω, it is not. Let ϕ = ϕn. Let T

be the theory of abelian groups. Then T ∪ diag(G) ∪ ϕ(a) is inconsistent, so let ψ(ḡ, a) ∈ diag(G) be

such that T ⊢ ψ(ḡ, a) → ¬ϕ(a). Then take the abelian group generated by ḡa, H . By the structure

theorem for finitely generated abelian groups, we can write H as a direct sum of cyclic groups, Z/niZ

and a torsion-free component, some number of copies of Z. Then H easily embeds into the direct

sum of cyclic groups Z/(n · ni)Z and a torsion-free component, with copies of Q instead of Z, but this
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group clearly makes every element in H divisible by n. Therefore T ∪ {ψ(ḡ, a), ϕ(a)} is consistent,

contradiction.

We can always adjoin the statement ∃x(px = 0∧
∧

i<n x 6= ci) for each ci with order p that we have

so far (just take the group and direct-sum it with Z/pZ). Then the collection of elements with order p

is infinite, and by properties of abelian groups with finite exponent, can be decomposed into infinitely

many p-ary direct summands.

7.1.5. Give an example of a first-order theory with e.c. models, where there are e.c. models which

satisfy different quantifier-free sentences.

Consider the theory of fields. e.c. models are the algebraically closed fields, as shown in the text.

But considering the algebraically closed field of characteristic 2 and the one of characteristic 3, 1+1 = 0

is true in the first and not in the second.

7.1.6. Let T be the theory ∀x¬(∃yRxy ∧ ∃yRyx). Describe the e.c. models of T . Give an example of

an ∃1 first-order formula which is not equivalent to a quantifier-free formula in e.c. models of T .

Define σ(x, y) = Rxy ∨ Ryx. Then σ defines a symmetric irreflexive relation on models of T , so

graphs can be interpreted in models of T . Thus, if A is an e.c. model of T , then A is the random

graph with σ as its connecting relation. In fact, A is e.c. if and only if, for any U, V finite disjoint

subsets of T , there is x such that, if ∀u ∈ U∀y(¬Ruy), then ∀u ∈ U(Rxu) ∧ ∀v ∈ V (¬Rxv) and if

∀u ∈ U∀y(¬Ryu), then ∀u ∈ U(Rux) ∧ ∀v ∈ V (¬Rxv). Both directions are obvious. The ∃1 formula

is ∃y(Rxy). It is clearly not always true, but there are no non-trivial quantifier-free formulas in x.

7.1.7. In Theorem 7.1.3, suppose that we weaken the assumption of AP to amalgamation over non-

empty structures. Show that the conclusion still holds, provided that we require φ to have at least one

free variable.

Note that the amalgamation property is used in Theorem 7.1.3 given (A, ā) and (B, b̄), with an

isomorphism taking ā to b̄. Thus, A and B are amalgamated over ā (with ā embedding in B as b̄). If ā

is not empty, then amalgamation over non-empty structures is sufficient. But ā is such that A |= φ(ā).

Since φ has at least one free variable, ā must be non-empty.

7.1.8. Let T be complete first-order arithmetic, i.e. the first-order theory of the natural numbers with

symbols 0, 1,+, ·. Show that the natural numbers form an e.c. model of T .

Let ϕ(x, ā) be some quantifier-free formula of N. Each element in ā is definable, so we can rewrite

ϕ(x, ā) as ϕ′(x). Then if T ⊢ ∃xϕ′(x), then a witness exists in N. If T ⊢ ¬∃xϕ′(x), then no witness

can exist in any model of T .

7.1.9**. Didn’t see in text. Will do shortly (have done in past).
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7.2.1. If K is an inductive class of L-structure, and J is the class of e.c. structures in K, show that

J is closed under unions of chains.

Since K is inductive, the union of a chain in J is certainly in K. We must show then that it is

e.c. But any formula φ(x, ā) has all of its finitely many parameters coming at some finite stage in the

chain, and thus there is a witness at that stage, and thus in the union.

7.2.2. A near-linear space is a structure with two kinds of elements, ‘points’ and ‘lines,’ and a

symmetric binary relation of ‘incidence’ relating points and lines in such a way that (i) any line is

incident with at least two points, and (ii) any two distinct points are incident with at most one line.

The near-linear space is a projective plane if (ii’) any two distinct points are incident with exactly one

line, and moreover (iii) any two distinct lines are incident with at least one point, and (iv) there is a

set of four points, no three of which are all incident with a line. (a) Show that the class of near-linear

spaces is inductive. (b) Show that every e.c. near-linear space is a projective plane. (c) Deduce that

every near-linear space can be embedded in a projective plane.

(a) Let B =
⋃

i<ω Ai be a union of a chain. Clearly (i) holds. Suppose we have points p, q incident

with l,m. But then all elements were added at some finite stage, i, but then Ai is not a near-linear

space.

(b) Clearly (ii’) and (iii) are necessary conditions for an e.c. near-linear space. Let A be an e.c.

near-linear space. Given points p, q, choose a line l with p ∈ l, q ∈ l. Then consider ∃z(z /∈ l). It is

easily seen to be consistent with diag(A), so we have r witnessing it. Then let m be the line such that

p ∈ m, r ∈ m, and n be the line such that q ∈ n, r ∈ n. Then ∃z(z /∈ l ∧ z /∈ m ∧ z /∈ n) gives a final

element, s, making p, q, r, s fulfill (iv).

(c) By Theorem 7.2.1, every near-linear space can be embedded in a projective plane.

7.2.3. Show that in Theorem 7.2.4(b), we can replace ‘∃1’ by ‘primitive’ (both times).

In the proof of (a) implies (b), a quantifier-free formula θ(c̄, d̄) is produced, from the diagram of A.

Write θ as a disjunction of conjunctions. But then one of those conjunctions is true, so we can replace

θ by θ′ which has only conjunctions of literals. Then ∃ȳθ is primitive. In the proof of (b) implies (c),

with φ any ∃1 formula with C |= φ(ā) for some C ⊇ A, if we write φ as a disjunction of conjunctions,

one of the conjunctions is satisfied by ā, so we can assume φ is primitive. Then the rest of the proof

goes through.

7.2.4. Let L be a first-order language and T an ∀2 theory in L. (a) Show that if B is a model of T

and A 41 B, then A is a model of T . (b) Show that if B is an e.c. model of T and A 41 B, then A is

an e.c. model of T .

(a) Let ϕ = ∀x̄∃ȳθ(x̄, ȳ) be an axiom of T . For any ā in A, consider ∃ȳθ(ā, ȳ). Since this is true in

B, it is true in A. Thus, ϕ is true in A.
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(b) Suppose ϕ(ā) is ∃1 and true in C ⊇ A. By amalgamation, since (B,A) ⇛1 (A,A), there is an

elementary extension of C, C′, with B embedding into C′, and the embedding fixing A. Then, since

B is e.c., B |= ϕ(ā), so A |= ϕ(ā).

7.2.5. Let L be a first-order language, T an ∀2 theory in L, and A an L-structure. Show that the

following are equivalent. (a) A is an e.c. model of T . (b) A is a model of T and for every model C of

T such that A ⊆ C, we have A 41 C. (c) For some e.c. model B of T , A 41 B.

(c) implies (a) by the previous problem, (b) is the definition of (a), and (a) implies (c) trivially,

with A = B.

7.2.6. Let L be a countable first-order language and T an ∀2 theory in L. Show that there is a

sentence φ of Lω1ω such that the models of φ are exactly the e.c. models of T .

By Theorem 7.2.6, a model A is existentially closed if and only if for every ∃1 formula φ(x̄) A |=

∀x̄(φ(x̄) ⇔
∧

Resφ(x̄)). This is a sentence of Lω1ω. Conjuncting all such sentences, for every φ, keeps

it Lω1ω.

7.2.7. Let L be a first-order language and T an ∀2 theory in L. (a) Show that if A is an e.c. model

of T and B is a model of T with A ⊆ B, then for every ∀2 formula φ(x̄) of L and every tuple ā in A,

if B |= φ(ā) then A |= φ(ā). (b) Show that if B in (a) is also an e.c. model of T then the same holds

with ∀3 in place of ∀2.

(a) Suppose B |= φ(ā), and write φ(x̄) = ∀ȳψ(x̄, ȳ), with ψ ∃1. Then for every choice of b̄ in A,

B |= ψ(ā, b̄). Since A is e.c., A |= ψ(ā, b̄). Thus, A |= φ(ā).

(b) Suppose B |= φ(ā), and write φ(x̄) = ∀ȳ∃z̄ψ(x̄, ȳ, z̄), with ψ ∀1. For any b̄ in A, then B |=

∃z̄ψ(ā, b̄, z̄). Let c̄ be a witness to this. Since (B,A) ⇛1 (A,A), we can embed B into an elementary

extension of A, A′. Then B |= ψ(ā, b̄, c̄). Since B ⊆ A′, A′ |= ψ(ā, b̄, c̄), as B is an e.c. model of T .

Then A′ |= ∃z̄ψ(ā, b̄, z̄), so A satisfies the same thing, so A |= φ(ā).

7.2.8. Let L be a first-order language and U a ∀2 theory in L. Show that among the ∀2 theories T

in L such that T∀ = U∀, there is a unique maximal one under the ordering ⊆. Writing U0 for this

maximal T , show that U0 is the set of those ∀2 sentences of L which are true in every e.c. model of U .

Let T be any model with T∀ = U∀. Since every e.c. model of T is an e.c. model of T∀, and thus an

e.c. model of U∀, and thus an e.c. model of U , every e.c. model of T is an e.c. model of U . Therefore,

every sentence in T must be true in every e.c. model of U . Let T be the set of all ∀2 sentences true in

every e.c. model of U . If we can show that T satisfies ∀T = ∀U , then we are done, since T is clearly

maximal. Let ϕ = ∀x̄θ(x̄), with θ quantifier-free, be a ∀1 sentence in T∀. Let A be an e.c. model

of U . Consider diag(A) ∪ {¬ϕ} ∪ U . If it is consistent, then let B be a model. Then A ⊂ B, and

B |= ∃x̄¬θ(x̄), but A does not, but A is e.c. Thus, it cannot be consistent. If U ∪{¬ϕ} is inconsistent,

then U ⊢ ϕ, so ϕ ∈ U∀. Otherwise, let U ′ = U ∪ {¬ϕ}. Let B be a model of U ′, and let C be an e.c.
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model containing B. Then, since ¬ϕ is ∃1, C |= ¬ϕ, which is impossible, since every sentence in T∀ is

true in all e.c. models of U .

7.2.9. Let L be a first-order language (not necessarily countable) and T an ∀2 theory in L. (a) Show

that if every model of T is embeddable in a simple model, then every e.c. model of T is simple. (b)

Deduce that every e.c. group is simple.

(a) Let A be an e.c. model, and suppose h : A → B is a homomorphism contradicting the

simplicity of A. By assumption, A extends to a simple model C. Let ā be the elements of A. Then I

claim (C, ā) ⇛
+
1 (B, h(ā)). (C, ā) ⇛1 (A, ā), since A is e.c., and (A, ā) ⇛

+
1 (B, ā), since A ⊆ B. Thus,

there is an elementary extension D of B and a homomorphism g : C → D extending h, by Theorem

5.4.7. But since h is not an embedding, g is not an embedding, contradicting the simplicity of C.

(b) Since every group can be embedded into a simple group, every e.c. group is simple by (a).

7.2.10. In commutative rings, write (*) for the condition ‘For each positive integer n, there is an

element a such that an = 0 but ai 6= 0 for all i < n.’ (a) Show that if A is a commutative ring in

which (*) holds, and φ(x) is any formula (maybe with parameters from A) such that φ(A) is the set

of nilpotent elements in A, then A has an elementary extension in which some non-nilpotent element

satisfies φ. (b) By iterating (a) to form an elementary chain, show that there is a commutative ring in

which the set of nilpotent elements is not first-order definable with parameters. (c) Show that every

e.c. commutative ring satisfies (*).

(a) By compactness. The set of formulas eldiag(A)∪{φ(x)}∪{xi 6= 0 | i < ω} is finitely consistent,

thus consistent, so there is an elementary extension.

(b) L is countable, so if we start with A countable, and start enumerating formulas and taking an

elementary extension for each one, we will be done after ω steps, and the union of the extensions will

be a commutative ring with no first-order definition of the nilpotent elements, as desired.

(c) Suppose A is a commutative ring. To show that there is some superstructure of A with a

nilpotent of degree i, form a new structure of i × i matrices with coefficients in A. A embeds as the

multiples of the identity matrix. Elementary linear algebra shows that we can find a nilpotent element

of degree i. Thus, any e.c. commutative ring must have nilpotents of every degree.

7.2.11. Let A be a commutative ring, a an element of A and n a positive integer. Show that the

following are equivalent. (a) For every element b of A, if ban+1 = 0 then ban = 0. (b) There is a

commutative ring B which extends A and contains an element b such that (a2b− a)n = 0.

(b) implies (a): Suppose (a2b− a)n = 0. Choose any c with can+1 = 0. Consider c(a2b − a)n = 0.

Expanding out (ab − 1)n yields terms where a has degree ≥ n + 1, except for the last term, (−a)n.

Thus, c(a2b− a)n = c(−a)n, so we have −can = 0 or can = 0, so (a) is true.

(a) implies (b): Consider the ring A[x]/I, where I is the ideal (a2x− a)n. We show that this ring

contains no non-zero elements of A. Suppose that n is even (the case n is odd is handled similarly).
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Let b =
(

∑

i≤m cix
i
)

(a2x− a)n. We show b = 0. We can assume m ≥ n. Multiplying out, we have

(c0a
n − b) +

m
∑

i=1

xi
i
∑

j=max(i−n,0)

(

n

i− j

)

an+i−jcj +
n
∑

i=1

xm+i
n
∑

j=i

(

n

j − 1

)

cm−n+ja
2n−j+1 = 0

So cma
2n = 0. But then, since cma

n−1an+1 = 0, cma
n−1an = 0. We can repeat this until we have

cma
n = 0. Thus, cm−1a

2n = 0, so cm−1a
n = 0, and so on down to cm−n+1a

n = 0. This continues to

propagate down until we have c0a
n = 0, and so b = 0.

7.2.12. Show that the amalgamation property fails for the class of commutative rings without nonzero

nilpotents.

Let A = Q[x]. Let B be the field of fractions of A. Let C = A[y]/(xy). Clearly A and B have no

nilpotents. C does not either because the radical of (xy) in Q[x, y] is itself, which is easy to see. Now

assume B and C can be amalgamated over A, say in D. Then we have x · x−1 = 1 in D, and yx = 0.

But then y = 0, which is not true in C, and so cannot be true in D.

7.2.13. Let T ba an ∀2 theory in a first-order language L. Suppose φ(x̄) is an ∃1 formula of L, and

χ(x̄) is a quantifier-free formula of L∞ω such that for every e.c. model A of T , A |= ∀x̄(φ ↔ χ).

Show that χ is equivalent to Resφ modulo T , and hence that Resφ is equivalent modulo T to a set of

quantifier-free formulas of L.

We show any model of T which is a model of χ is a model of Resφ and vice versa. Let (A, ā) |= T be a

model of χ(ā). Then there is an e.c. model of T containingA, B, in whichB |= χ(ā) ↔ φ(ā) ↔ Resφ(ā).

Then B |= Resφ(ā). Since Resφ consists of ∀1 formulas, A |= Resφ(ā). The reverse argument is similar.

Now, this means that all of the formulas in Resφ are satisfied by ā if and only if χ(ā), in models

of T . Write χ as a disjunction of conjunctions. By compactness, for any one formula of Resφ, ψ,

ψ is equivalent to a formula formed by taking only a finite number of disjunctions in χ, and then a

finite number of conjunctions in those disjunctions – a first-order quantifier-free formula. Thus, every

formula in Resφ is equivalent to a quantifier-free formula.

7.3.1. Show that if L is a first-order language, T and U are theories in L, T ⊆ U and T is model-

complete, then U is also model-complete.

Let A ⊆ B be models of U , hence models of T . Then A 4 B. Since this is true for any two such

models of U , U is model-complete.

7.3.2. Show that if a first-order theory T is model-complete and has the joint-embedding property, T

is complete.

Let A and B be any two models of T . Let C be a model in which both A and B embed. Then

A 4 C and B 4 C, so A ≡ C ≡ B.
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7.3.3. In the first-order language whose signature consists of one 1-ary function symbol F , let T be the

theory which consists of the sentences ∀xFn(x) 6= x (for all positive integers n) and ∀x∃=1yF (y) = x.

Apply Lindström’s test to show that T is model-complete.

∀x∃=1yF (y) = x can be written as ∀xy1y2(F (y1) = x ∧ F (y2) = x→ y1 = y2). Thus, T is ∀2. The

first axiom insures that T has no finite models. T says that F defines Z-chains. Thus, a model of T is

just a union of Z-chains. Any 2 models of cardinality ω1 are then isomorphic, since they consist of ω1

copies of Z. Thus, T is model-complete.

7.3.4*. Let T be the theory of (non-empty) linear orderings in which each element has an immediate

predecessor and an immediate successor, in a language with relation symbols < for the ordering and

S(x, y) for the relation ‘y is the immediate successor of x.’ Show that T can be written as an ∀2 theory.

Show by Lindström’s test that T is model-complete. Deduce that T is complete.

We can axiomatize T by the axioms for a linear order, which are ∀1, along with: ∀x(∃=1yS(x, y) ∧

∃=1yS(y, x)) and ∀xyz((S(x, y) → (z > x→ z ≥ y)))∧(S(y, x) → (z < x→ z ≤ y)). These axioms are

∀2. T is not complete by Lindström’s test, since for any cardinal κ, κ×Z and κ∗×Z are non-isomorphic.

However, any superstructure of a discrete linear ordering must just add more Z-chains, and it is easy

to see that such an embedding is elementary, by a back-and-forth argument, so T is model-complete.

Since it is easy to jointly embed two models, A and B into some model C (let C = A+B, and put all

elements of B greater than those of A), T is complete.

7.3.5. Give an example of a theory T in a first-order language L, such that T is not model-complete

but every complete theory in L containing T is model-complete.

Let T be the theory of a unary function, which is either like that in Exercise 7.3.3, or maps

every element to itself. T is the theory ∀x(F (x) = x) ∨ ∀x∃=1y(F (y) = x), along with ∀x(F (x) =

x) ∨ ∀x(Fn(x) 6= x), for each n. Then each completion of T is clearly model-complete and complete,

but they are also clearly different, so T is not complete.

7.3.6. Suppose T is a theory in a first-order language, and every completion of T is equivalent to a

theory of the form T ∪ U for some set U of ∃1 sentences. Suppose also that every completion of T is

model-complete. Show that T is model-complete.

Let A ⊆ B be models of T . Th(A) is a completion of T , and hence equivalent to T ∪U for U a set

of ∃1 sentences. Then, since ∃1 sentences pass upwards, B is also a model of T ∪ U , hence A 4 B.

7.3.7. Give an example of a theory T in a countable first-order language, such that T has 2ω pairwise

non-isomorphic algebraically prime models.

Let L be a language with 2 unary function symbols and countably many relation symbols, {f, g}∪

{Pi | i < ω}. Let T be the theory which says: ‘Every element satisfies at most one Pi;’ ‘Every Pi is
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nonempty;’ For each i, and for any term t, ∀x(Pi(x) → Pi(t(x)); For each i, and for any terms s and

t, ∀xy(x 6= y → t(x) 6= s(y)).

Thus, in each Pi, we have a term algebra. For each k < ω, let Ak be the model in which, for i 6= k,

Pi is a term algebra over one variable, xi, and Pk is a term algebra over two variables, xk and yk. I

claim each Ak can be embedded in any B |= T . For each i < ω, find b ∈ B with B |= Pi(b). If i 6= k,

map xi to b. This induces an embedding of Pi(Ak) into Pi(B). For i = k, map xk to f(b) and yk

to g(b). Then this induces an embedding of Pk(Ak) into Pk(B). Thus, Ak embeds into B, and so is

algebraically prime. However, Ai 6∼= Aj , since if xi ∈ Ai maps to xi ∈ Aj , then yi must become a term

of xi, which it wasn’t before, and vice versa. But then nothing can map to xi ∈ Aj , and so there is no

isomorphism.

7.3.8. Let T be the theory which says the following. All elements satisfy exactly one of P (x) and

Q(x); for every element a satisfying P (x) there are unique elements b and c such that R(b, a) and

R(a, c); R(x, y) implies P (x) and P (y); there are no finite R-cycles; S(x, y) implies P (x) and Q(y); if

R(x, y) and Q(z) then S(x, z) iff S(y, z). Show that in an e.c. model of T , elements a, b satisfying P (x)

are connected by R if and only if there is no element c such that S(a, c) ↔ ¬S(b, c). Deduce that T

has e.c. models with elementary extensions which are not e.c., and hence that T is not companionable.

Models of T consist of Z-chains, along with elements which are associated with some chain(s)

(possibly none). In a model of T , A, we know that if a and b are connected by R, then S(a, c) ↔ S(b, c)

for all c ∈ Q(A). However, if a and b are not connected, it might still be that S(a, c) ↔ S(b, c) for all

c ∈ Q(A). However, it is trivial to embed A in a model which has some c as a counterexample, and

this means that A is not e.c. Thus, any e.c. model of T must have such a counterexample for any a

and b not connected, so the claim holds. However, if A is e.c., we can just adjoin a new Z-chain and

set S(a, x) = S(b, x) for every a in the new chain, and b in some old chain. It is easy to see that this is

an elementary extension, since we can play a back-and-forth game, but it is not e.c. since it fails the

above property. Thus, the class of e.c. structures is not closed under elementary equivalence. Since T

is an ∀2 theory, this means that T is not companionable.

7.3.9. Let G be a group and a, b two elements of G. (a) Show that the following are equivalent. (i)

There is a group H ⊇ G with an element h such that h−1ah = b. (ii) The elements a and b have the

same order. (b) Explain this as an instance of Lemma 7.2.5. (c) Prove that the theory of groups is not

companionable.

(a) Clearly (i) implies (ii), since then bn = h−1anh, which is 1 iff an = 1. For the converse, consider

G acting on itself by left multiplication. G can then be embedded onto a subgroup of the symmetric

group on |G| elements, denoted Ω. Any element a ∈ G can be regarded as a (possibly infinite) product

of disjoint (possibly infinite) cycles. All of these cycles have the same order. To see this, let g and h

be elements in different cycles. WLOG, assume g’s cycle is finite (if there are no finite cycles, we are

65



done). Then for some n, ang = g, so anh = an(gg−1h) = (ang)g−1h = h. Thus h’s cycle has length at

most n. Repeating the argument with h and g reversed shows that their cycles have the same length.

Then if two elements of G, a and b, have the same order, their cycles clearly all have the same length.

With that, it is trivial to construct an element of Ω, h, such that h−1ah = b.

(b) T , the theory of groups, is an ∀2 theory, and the formula we wish to satisfy is ∃1. Thus, we can

expand G to such an H iff the resultant is true. The resultant is exactly those formulas which say that

a and b have the same order.

(c) If T had a companion, T ∗, we must have that Resφ(x, y) is equivalent modulo T ∗ to a single

∀1 formula ψ(x, y) of L, by Corollary 7.3.7. Then ψ(x, y) must say that x and y have the same order.

T ∗ ∪ {¬ψ(x, y)} ∪ {xn 6= 1 ∧ yn 6= 1 | 0 < n < ω} cannot be consistent, since x and y have the

same infinite order. Since there certainly are e.c. groups with elements of infinite order, we have

T ∗ ⊢
∧

i<m xni 6= 1 ∧ yni 6= 1 → ψ(x, y) by compactness, for some finite m. But then, taking x and y

with orders not equal, but both larger than max(ni | i < m), we have ψ(x, y), which is impossible.

7.3.10. Give an example of a ω1-categorical countable first-order theory T in a countable first-order

language L, such that no definitional expansion of T by adding finitely many symbols is model-complete.

Let L be the language with countably many equivalence relations, 〈Ei | i < ω〉. Let A be the L-

structure with universe ω, with the classes of Ei being {0}, {1, 2}, {3, 4, 5, 6}, . . .{2i − 1, . . . , 2i+1 − 2}

along with {2i+1 − 1 + k(2i+1), . . . , 2i+1 − 1 + (k + 1)2i+1 − 1} (k < ω). Thus, for each Ei, there is a

class with 1 element, a class with 2, and so on up to a class with 2i elements. Thereafter, every class

has 2i+1 elements. If an element is in a “distinguished” Ei class (in a class with < 2i+1 elements),

then it is in a distinguished Ej class for every j > i, but the converse has counterexamples. As well, if

xEiy, then xEjy for j > i. A is clearly the prime model for T . We define an L-structure C. C looks

like A, but has no distinguished classes. Thus, for each Ei, every Ei equivalence class of C has 2i+1

elements. xEiy still implies xEjy for j > i. If B is an uncountable model of T , it is easy to see that

B breaks up into ω along with copies of C. Two elements are in the same copy of C iff there is some

Ei such that they are in the same equivalence class of Ei. Since each Ei has finitely many elements

in each equivalence class, C is countable, so B must have ω1 copies of C. Thus, T is ω1-categorical.

However, T is not model-complete for any finite definitional expansion of L. Let B be any model of T .

Let {ϕ1, . . . , ϕn} be the formulas used in a definitional expansion (which we can assume is relational),

and let k be the greatest index of an equivalence relation appearing in the ϕ’s. Now take a such

that xEka has 2k+1 elements satisfying it and so does xEk+1a (a is in a distinguished class for Ek+1

but not for Ek). Let D = B + C be the structure with B and also with a copy of C, the structure

defined above. Now we consider a mapping of B into D, g. All elements are mapped to themselves,

except for the Ek equivalence class of a, which is mapped to an arbitrary Ek class of C. Now, consider

ϕi(b̄, ā), for some ā in the equivalence class of a, and b̄ ∈ B. A back-and-forth argument shows that

B |= ϕi(b̄, ā) ⇔ D |= ϕi(b̄, g(ā)). Thus, g preserves the new definitions. g is clearly an embedding
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of the original language, so g is an embedding. But g(B) 64 D, since a no longer has exactly 2k+1

elements in its Ek+1 equivalence class.

7.3.11. Give an example of an ω1-categorical countable first-order theory which is not companionable.

Consider the model, A, of ordered pairs, (m,n), m ≥ −1, n ≥ 0. There is a unary relation symbol,

Diag, picking out the elements (m,m). There are two symmetric binary relation symbols, Horiz and

V ert. The relation Horiz is an equivalence relation; its classes are the sets {(m, b) | m ≥ −1} with

b fixed. The relation V ert holds between (m,n) and (m,m) whenever m,n ≥ 0. Let T = Th(A, ā),

where ā lists the elements of A. I claim T is ω1-categorical and not companionable. The sentence

∀x1, x2(∀y(¬V ert(x1, y) ∧ ¬V ert(x2, y)) → ¬Horiz(x1, x2)), along with ∀x∃y(Diag(y) ∧Horiz(x, y))

and some other obvious sentences, assures us that Diag has cardinality ω1 in a model of size ω1. Then

every set has size ω1, and it is easy to see that all such models are isomorphic. However, let U be a

putative model companion for T . Then U says that infinitely many named elements are not paired

with other elements by V ert, since U∀ = T∀, so every model of U has an elementary extension with

new such elements. Let B be a model of U and B′ the extension. Take C ⊇ B′ a model of T , and

then take D ⊇ C a model of T such that these new elements have V ert pairings. Then take E ⊇ D a

model of U , showing that U is not e.c., and so not a companion.

7.3.12. Give an example of a companionable ∀1 theory T in a first-order language L, and an ∃1

formula φ(x̄) in L such that Resφ is not equivalent modulo T to any finite set of ∀1 formulas.

Let T be the set of sentences ∀xy¬(P0x∧Piy), (0 < i < ω), where the Pi’s are unary relations, and

let φ be ∃xP0x. Then clearly, a model A has an expansion satisfying φ iff for every i > 0, A |= ∀x¬Pix.

By compactness, there is no way to express this as a first-order ∀1 sentence. We now show T is

companionable – its e.c. models come in two kinds. Either there are infinitely many elements which

do not satisfy P0 and infinitely many which do satisfy P0 or there are infinitely many elements which

satisfy any boolean combinations of the Pi’s, i > 0. These axioms can be written as ∃≥nx¬P0x and

∃≥nx(P0(x) ∨
∧

0<i<n P
σ(i)
i x), where σ is a map from n to 2, along with the axioms of T . Thus, the

e.c. models are axiomatizable, and thus T is companionable.

7.4.1. In Theorem 7.4.1, show that T has quantifier elimination if and only if condition (c) holds

whenever ā is a tuple of elements of A.

Theorem 7.4.1 proves that if, when A and B are models of T , ā a sequence from A, and e : 〈ā〉A → B

is an embedding, then there is always an elementary extension D of B and an embedding f : A → D

which extends e, then T has quantifier elimination, and vice versa. Clearly, if ā is a tuple, then T

implies the modified (c) (the if-clause), since a tuple is still a sequence. The question is whether the

modified (c) implies quantifier elimination. Thus, we know that we can extend every tuple to a full

embedding, but perhaps not every sequence. However, we show that given ϕ(x̄), any formula, the truth
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of ϕ(ā) depends only on the quantifier-free type of ā. Go by induction on the number of quantifiers

in ϕ. Let A be any model, with ā in A. Suppose A |= ϕ(ā). Let B be a model with e(〈ā〉A) an

embedding of 〈ā〉A in B. Then b̄ = e(ā) satisfies the same quantifier-free type. We can assume that e

is the identity, so b̄ = ā. Now, by (c), take B an elementary extension of B and f an extension of e,

so that f(A) ⊆ D. If ϕ(x̄) = ∃yθ(x̄, y), where θ has 1 fewer quantifier, then choose c ∈ f(A) satisfying

f(A) |= θ(ā, c). Then by induction, since 〈ā〉f(A) embeds into D, D |= θ(ā, c). Thus, D |= ϕ(ā), so

B |= ϕ(ā). If the first quantifier of ϕ is ∀, then since we have an embedding of 〈ā〉D into A (the

identity), we can elementarily extend A to C containing a copy of D (Note that the copy of A in the

copy of D may not coincide with the A in C, but the ā will). Then since C |= ϕ(ā), C |= θ(ā, c)

for each c in the copy of D, if ϕ(x̄) = ∀yθ(x̄, y). Thus, D |= ϕ(ā), and so B |= ϕ(ā). Thus, ϕ(ā) is

determined by the quantifier-free type of ā. By an application of compactness, ϕ is thus equivalent to

a single quantifier-free formula.

7.4.2*. Show that in Corollary 7.4.3, condition (a) can be replaced by (a’): if B is a model of T

and A is a proper substructure of B, then there are an element b of B which is not in A and a set

Φ(x) of quantifier-free formulas of L with parameters in A, such that B |=
∧

Φ(b), Φ determines the

quantifier-free type of b over A, and for every finite subset Φ0 of Φ, A |= ∃x
∧

Φ0.

This condition is not fulfilled by real closed fields. Anyway, following the proof of Corollary 7.4.3, all

we need to show is that given a model, B, and a submodel, C, any element in B induces a consistent

quantifier-free type in C. Let b be any element of B \ C. First, define A ⊇ C to be a maximal

substructure of A not containing b. Such a A exists just by repeatedly adjoining elements of B, and

stopping when no more can be adjoined without including b. Now, note that the quantifier-free type

of b is consistent with A: since any element not in A cannot be added, any element d ∈ B \ A must,

with some ā in A, define b with some term, t (x, ȳ) – otherwise, we could add d. Fix d with a consistent

quantifier-free type over A (exists by the statement of the problem). Then, if Φ (x) is the complete

quantifier-free type of b over A, we know that A |= ∃x
∧

Φ0 (t (x, ā)) for Φ0 any finite subset of Φ. Thus,

∃y
∧

Φ0 (y), just setting y to be t
(

b′Φ0
, ā
)

, where b′Φ0
is the witness. Now, suppose the quantifier-free

type of b over C is not consistent with C. Then for some φ (x, c̄), a finite quantifier-free formula, there

is no witness in C. But there is certainly a witness in A, say e. Consider 〈C ∪ {e}〉A. Then by the

same argument as above, the quantifier-free type of e is consistent over C. But the quantifier-free type

of e says φ (x, c̄). Thus, there must be a witness in C. The rest of the Corollary proceeds much the

same way: since the quantifier-free type of b is consistent with C, it is consistent with any supermodel

of C, so some elementary extension of any supermodel contains a witness.

7.4.3. Let L be a first-order language with finite signature, and T a theory in L. Show that the

following are equivalent. (a) T has quantifier elimination. (b) If A and B are any models of T , then for

each n < ω, any pair of tuples (ā, b̄) from A, B, respectively, such that (A, ā) ≡0 (B, b̄), is a winning
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position for player ∃ in the game Gn[A,B].

It is easy to show that (ā, b̄) is a winning position for Gn[A,B] iff they satisfy all the same unnested

formulas of quantifier rank n. Then (a) easily implies (b), ā and b̄ actually agree on every formula.

Moreover, if ϕ(x̄) is any formula, ϕ is equivalent to θ, with θ unnested and of finite quantifier rank,

say n. Since (ā, b̄) is a winning position for Gn[A,B], θ agrees on ā and b̄, so ϕ does as well. Thus, the

quantifier-free type determines ϕ. An application of compactness later, ϕ is quantifier-free.

7.4.4. Let L be a first-order language and T a theory in L. Show that the following are equivalent.

(a) T has quantifier elimination. (b) if A and B are any ω-saturated models of T and ā a tuple of

elements of T such that (A, ā) ≡0 (B, ā), then (A, ā) and (B, ā) are back-and-forth equivalent. (c) If

A is a model of T , B is a λ-saturated model of T for some infinite cardinal λ > |A|, and ā is a tuple of

elements of T such that (A, ā) ≡0 (B, ā), then there is an elementary embedding f : A→ B such that

fā = b̄.

(a) implies (b) is just applying the definition of the back-and-forth game, since given (A, ā) ≡0 (B, b̄),

we know that (A, ā) ≡1 (B, b̄), so if c is any element of A, the type of c over ā is consistent over b̄,

and so realized in B, so (A, āc) ≡0 (B, b̄d), for some d. We can continue this, so A and B are back-

and-forth equivalent. For the converse, given any ϕ(x̄) = ∀y0∀y1∃y2 . . . ∀ynθ(ȳ, x̄), if A |= ϕ(ā) and

B |= ¬ϕ(ā), we extend A and B to ω-saturated models, then play a back-and-forth game, choosing ȳ.

Let ϕi be the ϕ with the first i quantifiers deleted. If we have chosen c0, . . . , ci, and d0, . . . , di, with

(A, ā, c0, . . . , ci) ≡0 (B, ā, d0, . . . , di), A |= ϕi(c0, . . . , ci, ā) and B |= ¬ϕi(d0, . . . , di, ā). If ϕi’s outer

quantifier is “∃,” have ∀ choose a witness from A to this formula. Then, when ∃ has made the proper

move from B according to the winning strategy, both of the above properties are preserved, since

B |= ∀yi+1¬ϕi+1(d0, . . . , di, yi+1, ā), so any choice by ∃ for yn+1 preserves ¬ϕi+1. After n moves, we

will have two quantifier-free formulas, and āc̄ and ād̄ will disagree on them, but this is impossible, since

we will have (A, āc̄) ≡0 (B, ād̄). Thus, the assumption that we could find such (A, ā) and (B, ā) was

wrong, so the quantifier-free type does determine ϕ, and compactness means that ϕ is quantifier-free.

For (c) implies (a), given (A, ā) and (B, ā), elementarily extend B to a λ-saturated model, B′, then

elementarily embed A in it. Then A and B′ agree on ϕ(ā) for any ϕ, and B′ and B agree, so A and B

agree. Thus, quantifier-free type determines satisfaction, so by compactness, ϕ is quantifier-free. For

(a) implies (c), we know that, since (A, ā) ⇛1 (B, ā) (since (A, ā) ≡1 (B, ā)), we can embed A in B,

sending ā to ā, by Theorem 8.3.1. The embedding is elementary since T has quantifier elimination.

7.4.5. Let L be a first-order language, T a theory in L and φ(x̄) a formula of L. Show that the

following are equivalent. (a) φ is equivalent modulo T to a quantifier-free formula ψ(x̄). (b) If A and B

are any two models of T and ā, b̄ are tuples of elements of A, B respectively such that (A, ā) ≡0 (B, b̄),

then A |= φ(ā) implies B |= φ(ā). (c) If A and B are any two models of T , ā is a tuple of elements of

A such that A |= φ(ā), and f : 〈ā〉A → B is an embedding, then B |= φ(fā).
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(b) and (c) are clearly equivalent, since if there is an embedding, the tuples are 0-equivalent, and if

they are 0-equivalent, there is an embedding. (b) implies (a) by compactness. (a) implies (b) trivially.

7.4.6. Let L be a first-order language and T a complete theory in L. Show that T has quantifier

elimination if and only if every model of T has an ultrahomogeneous elementary extension.

In the forwards direction, we know that every model of T has a strongly ω-homogeneous elementary

extension. For such a model, say M , to be ultrahomogeneous, we need that if (M, ā) ≡0 (M, b̄), then

in fact (M, ā) ≡ (M, b̄). Quantifier elimination gives this to us, and so M is ultrahomogeneous. In

the reverse direction, given any model A, with ā and b̄ tuples in A such that (A, ā) ≡0 (A, b̄), take an

ultrahomogeneous elementary extension, M . Then (M, ā) ≡0 (M, b̄), so there is an automorphism of

M taking ā to b̄. Thus, for any formula ϕ, M |= ϕ(ā) ⇔ M |= ϕ(b̄), so the same is true of A. Thus,

in any model of T , the quantifier-free type of a tuple determines which formulas it satisfies. If two

models with tuples of the same quantifier-free type disagree on some formula on those tuples, extend

one of the models to a λ-universal model with λ larger than the cardinality of the other model, and

then embed the other model in this universal one. Then a single model disagrees on tuples, which is

impossible. Thus, the quantifier-free type determines satisfaction of every formula, so modulo T , by

compactness, all formulas are quantifier-free.

7.4.7*. Let A be an integral domain. Show that if A is q.e. then A is a field.

If A is finite, then A is trivially a field, by taking powers of each element. So let A be infinite.

The formula ∃y(xy = 1) defines the set of invertible elements in A. By quantifier elimination, it

is equivalent to a quantifier-free formula, which of necessity is a finite disjunction of conjunctions of

formulas saying that polynomials in x are equal or inequal to 0. By embedding A in its field of fractions,

K, it is easy to see that limits on the number of roots that we know for fields still hold for integral

domains. There is some conjunction in this formula which holds for infinitely many elements of A, by

the pigeonhole principle, but if any formula in the conjunction has a non-trivial equality, then only

finitely many elements of A can satisfy it. Thus, the conjunction contains only inequalities, so only

finitely many elements (the roots of the polynomials concerned) can be non-invertible. But if a is any

invertible element, and b is a non-invertible element, then ab must also be non-invertible, since if it

had an inverse, (ab)−1, then (ab)(ab)−1 = 1, so b(a(ab)−1) = 1, so b is invertible. Thus, for every

such b, we can find a1 and a2 distinct such that a1b = a2b, by the pigeonhole principle again, so then

(a1 − a2)b = 0. But this violates the fact that A is an integral domain unless b = 0. Therefore the only

non-invertible element is 0, so A is a field.

7.4.8. Let T be a first-order theory with a model companion U . Show that U has quantifier elimination

if and only if T∀ has the amalgamation property.

By Theorem 7.4.1, since U is model-complete, if U∀ = T∀ has the amalgamation property, U
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eliminates quantifiers. Conversely, also by Theorem 7.4.1, if U eliminates quantifiers, then U is model

complete (already known) and U∀ = T∀ has the amalgamation property.

7.4.9. Let T be a theory in a first-order language L, and U a model companion of T . Show that the

following are equivalent. (a) T has the amalgamation property. (b) For every model A of T , U∪diag(A)

is a complete theory in L(A). (A theory U satisfying (a) or (b) is said to be a model-completion of T .)

(a) implies (b): Let A be any model of T . Let B and C be any two models of U ∪ diag(A). Since

U is a model companion, we can find models B′ and C′ of T containing B and C, respectively. Then

we can amalgamate B′ and C′ into D′, a model of T , preserving A. Finally, extend D′ to D, a model

of U . Since U is model-complete, B1 4 D and B2 4 D. Thus, if ā is a listing of all elements of A,

(B1, ā) ≡ (B2, ā). Thus, U ∪ diag(A) is complete.

(b) implies (a): Let A be any model of T , and let B and C be models of T containing A. Let B′

and C′ be models of U containing B and C respectively. Since U ∪ diag(A) is complete, and both B′

and C′ must satisfy it, (B′, ā) and (C′, ā) are elementarily equivalent, where ā is a listing of A. Thus,

by amalgamation, there is an elementary extension of B′, D′, and an embedding of C′ into D′ which

preserves ā. Since D′ elementarily extends B′, it is a model of U . Let D be a model of T containing

D′. Then B ⊆ D, and C embeds into D by the embedding of C′ into D′, and A is preserved by the

embedding.

7.4.10. Let L be the first-order language whose signature consists of one 1-ary function symbol. Show

that the empty theory in L has a model completion.

It is trivial to see that the empty theory has the amalgamation property. Thus, if we can show

that the e.c. models are axiomatizable, then we are done. Looking at ∃1 formulas of L, if in some

model every element is the image of infinitely many other elements, and there are infinitely many

cycles of every finite order, then that model is existentially closed, and vice versa. These properties

are axiomatized by ∀x∃>ny(f(y) = x) and ∃>ny(f
m(y) = y), for all n,m ∈ ω.

7.4.11*. An ordered abelian group is an abelian group with a 2-ary relation ≤ satisfying the laws ‘≤ is

a linear ordering’ and ∀xyz(x ≤ y → x+z ≤ y+z). Let Toa be the first-order theory of ordered abelian

groups and Tdoa the first-order theory of ordered abelian groups which are divisible as abelian groups.

(a) Show that Tdoa is the model companion of Toa. (b) Show that Tdoa has quantifier elimination and

is complete. (c) Show that Tdoa = Th(Q,≤) where Q is the additive group of rationals and ≤ is the

usual ordering.

It is easy to see that any ordered abelian group can be made divisible, by the same argument as in

Exercise 7.1.4. (In fact, there are no cyclic groups in the decomposition.) Thus, the e.c. models of Toa

must be divisible. Thus, if we can show that Tdoa is model-complete, we will be done. We show this

by showing that Tdoa has elimination of quantifiers. Consider ∃yθ(x̄, y), with θ quantifier-free. Writing
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θ as a disjunction of conjunctions and passing ∃y through the disjunction, we can assume that θ is a

conjunction of literals. Now, if any literal with y in it is an equality, then we can write ny = t(x̄), with

n ∈ Z \ {0}, and t some term. Note that x → |n|x is an embedding. Let θ′ be the result of replacing

every variable x in θ with |n|x, and replacing every |n|y with t(x̄) (if n is negative, put t(x̄) on the

other side of the equality or inequality in question). θ′ does not mention y. Now, suppose A |= θ′(ā),

with A |= Tdoa and ā a tuple in A. Then, letting c be the unique element such that nc = t(ā), it is

easy to see that A |= θ(c, ā). Reversing, if c satisfies θ(y, ā), then we know that nc = t(x̄), and the

rest follows. Thus, we may assume that no literal in θ is an equality. Using the shorthand x < y for

x ≤ y ∧ x 6= y, we see that by possibly rearranging θ and passing the ∃y quantifier through again, we

can assume that all literals are of the form t(x̄, y) < s(x̄, y), for terms s, t. Let there be k literals in θ.

We can write every literal involving y in the form niy < t(x̄) or t(x̄) < niy, for some ni ∈ N\{0}, i < k.

Let m = lcm(ni | i < m, ni 6= 0). Replacing each variable in the ith term by m/ni copies (leaving

it unaltered if ni = 0), we have a finite number of order conditions on a single element, with respect

to some terms of x̄. Since it is easy to see that a divisible ordered group is a dense linear ordering,

quantifier elimination for dense linear orders shows that the existence of such an element only depends

on the ordering of these terms of x̄, which is expressible with a quantifier-free formula. Thus, θ is

equivalent to a quantifier-free formula, so Tdoa eliminates quantifiers. Thus, it is model-complete, and

also complete. Since (Q,≤) is a divisible ordered abelian group, and Tdoa is complete, Th(Q,≤) must

equal Tdoa.

7.4.12. In the notation of the previous exercise, show that all ordered abelian group satisfy the same

∃1 first-order sentences.

We show that (Q,≤) and (Z,≤) satisfy the same ∃1 first-order sentences. Since (Q,≤) contains

(ZZ,≤), only one direction needs to be shown. Suppose ∃x̄θ(x̄) is an ∃1 sentence, and let ā in Q

witness its truth in Q. Multiplying ā by gcd(ā) to get b̄ (this multiplication is an embedding), we see

that Q |= θ(b̄), and since b̄ is in Z, Z |= θ(b̄), so Z |= ∃1x̄θ(x̄). Thus, (Z,≤) and (Q,≤) satisfy the

same ∃1 sentences. But it is easy to see that any ordered abelian group contains (Z,≤) as an ordered

abelian group, so any ordered abelian group satisfies all the ∃1 sentences that (Z,≤) satisfies, and any

ordered abelian group is contained in a divisible ordered abelian group, whose theory is the same as

Th(Q,≤), so (Q,≤) satisfies all the same ∃1 sentences that the group satisfies, and so every ordered

abelian group satisfies exactly the same ∃1 sentences.

7.4.13. Let L be a first-order language and T an ∀1 theory in L. Show that if φ(x̄) is a formula of L

such that both φ and ¬φ are preserved by all embeddings between models of T , then φ is equivalent

modulo T to a quantifier-free formula ψ(x̄).

Let A be a model, and ā a tuple in A with A |= φ(ā). If such cannot be found, then φ is trivially

quantifier-free. Now let B = 〈ā〉A. Since T is ∀1, B is a model of T , and since B ⊆ A, B |= φ(ā). But
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B embeds into any model C that contains c̄ with the same quantifier-free type as ā. Thus C |= φ(c̄).

Thus, whether a tuple satisfies φ depends only on the quantifier-free type of the tuple. By compactness,

φ is quantifier-free.

7.4.14. Let L be a first-order language, T an ∀1 theory in L and φ(x̄) a quantifier-free formula of

L. Show that if T ⊢ ∃x̄φ, then for some m < ω there are tuples of terms t̄0(ȳ), . . . , t̄m−1(ȳ) such that

T ⊢ ∀ȳ
∧

i<m φ(t̄i(ȳ)).

Let A be any model of T , and let B = 〈a〉A, for some a ∈ A. B |= T and so B |= ∃x̄φ. But every

element of B is necessarily a term of a, so for some term t̄0(a), B |= φ(t̄0(a)). Suppose that for some

choice of model, A1, and element, a1, 〈a1〉A1
does not have t0(a1) satisfying φ. Then it must have some

other term satisfying φ, t1(a1). Repeat this until either every new choice leads to a repeated term,

or we have exhausted all possible terms, and have a list {ti(y) | i < |L|} of terms which are possible

satisfactions of φ. Then by compactness we can satisfy T ∪ {¬φ(ti(c)) | i < |L|}, which is impossible,

since then the element named by c generates a substructure in which ∃φ is false.

8.1.1. Suppose λ is an infinite cardinal and A is a λ-saturated L-structure. Show that if E is an

equivalence relation on n-tuples of elements of A which is first-order definable with parameters, then

the number of equivalence classes of E is either finite or ≥ λ.

Suppose there are exactly α equivalence classes of E. Let X be a set containing an element from

each equivalence class, and consider the type {¬xEy | y ∈ X}. If there are infinitely many equivalence

classes of E, then by compactness this type can be completed. If |X | < λ, then by saturation this type

must be realized, yielding an element not in the same equivalence class as any element of X , which is

impossible by X ’s construction. Thus, |X | ≥ λ, and there are therefore ≥ λ many equivalence classes.

8.1.2. Let A be an L-structure and λ a cardinal > |A|. Show that the following are equivalent. (a) A

is λ-big. (b) A is λ-saturated. (c) A is finite.

(a) implies (b) by Theorem 8.1.2. To see that (b) implies (c), consider the set {x 6= a | a ∈ A}. If

it is consistent, we can extend it to a type which is realized in A, since |A| < λ, but this is impossible.

Thus, it is inconsistent. But if there are infinitely many elements in A, then any finite subset must be

consistent, so there are only finitely many elements in A. For (c) implies (a), let L+ = L ∪ {R}, for

R a new relation symbol, and let B be an L+-structure with (A, ā) ≡ (B, b̄)|L, for ā some sequence of

length < λ. We must extend A to an L+-structure. Since A is finite, B is finite, so there is a single

sentence saying that the complete elementary diagrams of A and B are the same (with ā mapping to

b̄). Thus, (A, ā) = (B, b̄)|L, and so we can just make RA = RB.

8.1.3. We define λ− to be µ if λ is a successor cardinal µ+, and λ otherwise. Show that if an

L-structure A is not λ-saturated, then for all κ with max(|L|, λ−) ≤ κ < |A| there are elementary

substructures of A of cardinality κ which are not λ-saturated.
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If A is not λ-saturated, then there is some set X with |X | < λ and p ∈ S(X ;A) such that p is not

realized in A. |X | ≤ λ−. Now, for any such κ, just take an elementary substructure of A, B, containing

X of size κ. Then B cannot realize p, since A does not.

8.1.4. (a) Show that if A is λ-big then A is strongly λ-homogeneous. (b) Show that if A is strongly

λ-homogeneous, then A is λ-homogeneous. (c) Show that if A is |A|-homogeneous, then A is strongly

|A|-homogeneous.

(a) Suppose we have (A, ā) ≡ (A, b̄). By elementary amalgamation we can find an elementary

extension of A, A1 such that there is an elementary embedding, g1, of A into A1 such that g1(b̄) = ā.

Now I claim (A1, A) ≡ (A1, g1(A)). Given any sentence with parameters in A, ϕ(c̄), A1 |= ϕ(c̄) ⇔

A |= ϕ(c̄), since A 4 A1, and also A1 |= ϕ(g(c̄)) ⇔ g(A1) |= ϕ(g1(c̄)), since g1(A) 4 A1. Finally,

A |= ϕ(c̄) ⇔ g1(A1) |= ϕ(g1(c̄)), since g1 is an isomorphism of A to g1(A). Thus, A1 |= ϕ(c̄) ⇔

A1 |= ϕ(g1(c̄)). Repeat this procedure with (A1, A) and (A1, g1(A)) to get A2 4 A3 4 · · · , and

g2 ⊆ g3 ⊆ · · · . Let A′ =
⋃

i<ω Ai and g =
⋃

i<ω gi. Then g is an automorphism of A′ taking ā to b̄,

and A 4 A′. Let L+ = L ∪ {R}, where R is a binary relation symbol, and let RA′

(x, y) ⇔ g(x) = y.

(A′, ā, b̄)|L = (A, ā, b̄), so by λ-bigness of A, we can make (A, ā, b̄) into a model of Th((A′, ā, b̄))

with (A′, ā, b̄) considered as an L+-structure. (A′, ā, b̄) as an L+-structure says that R defines an

automorphism taking ā to b̄, and so the expansion of A must have R defining an automorphism on A

taking ā to b̄.

(b) Given (A, ā) = (A, b̄), let g be an induced automorphism. For any c then, (A, ā, c) ≡ (A, b̄, g(c)).

(c) If A is |A|-homogeneous, we can build an automorphism in stages, by induction: given (A, ā) ≡

(A, b̄), list all the elements of A, 〈ai | i < |A|〉, with ā an initial segment of this list, and all the

elements of A, 〈bi | i < |A|〉, with b̄ an initial segment. We define 〈gi | i < |A|〉, a chain of functions,

from the first sequence to the second, with gi defined on all aj , j < i, and (A, 〈aj | aj ∈ dom(gi)〉) ≡

(A, 〈g(aj) | aj ∈ dom(gi)〉). g0 maps ai to bi for ai ∈ ā. At limit stages, take unions. At stage i + 1,

if we have not defined gi+1(ai), we have (A, 〈aj | j < i〉) ≡ (A, 〈gi(aj) | j < i〉). By homogeneity, we

can find b such that (A, 〈aj | j < i〉 , ai) ≡ (A, 〈gi(aj) | j < i〉 , b). Let gi+1(ai) be the b occurring first

in the bi’s which has not been mapped to already. Now repeat this for bi, finding the first a for which

gi(a) is not defined, and mapping gi+1(a) = bi. Then g =
⋃

i<|A| gi will be an automorphism.

8.1.5. Let λ be an infinite cardinal, A a λ-saturated structure and X a set of fewer than λ elements

of A. Show (a) if an element a of A is not algebraic over X , then infinitely many elements of A realise

tpA(a/X), (b) if an element a of A is not definable over X , then at least two elements of A realize

tpA(a/X).

(a) Suppose there are exactly n realizations of p(x) = tpA(a/X). Consider an n+1-type q(x0, . . . , xn)

such that q ⊇ p(x0) ∪ . . . ∪ p(xn). If a is not algebraic, every finite subset of q is consistent, so q is

realized by λ-saturation, but then there are n+ 1 realizations of p. Thus, a is not algebraic.
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(b) Same procedure, with n = 1.

8.1.6. Show that if A is a λ-big L-structure and ā is a sequence of fewer than λ elements of A, then

(A, ā) is λ-big. Show that the same holds for λ-saturation, λ-homogeneity, and strong λ-homogeneity.

Suppose (B, b̄) is such that (B, b̄)|L ≡ ((A, ā), c̄), where c̄ is a sequence of fewer than λ elements of

A. Then āc̄ is a sequence of fewer than λ elements of A, so by λ-bigness for A, we can expand (A, āc̄)

to a model of Th(B, b̄). This expansion expands ((A, ā), c̄) to a model of Th(B, b̄) as well. Thus (A, ā)

is λ-big. Suppose X is a set with |X | < λ. Thus, if p is any complete type over X in (A, ā), then

p can be written as a complete type over X ∪ ā in A, but |X ∪ ā| < λ, so p has a realization in A

which is a realization in (A, ā). Suppose ((A, ā), b̄) ≡ ((A, ā), d̄) for some b̄, d̄ sequences of fewer than

λ elements. Then (A, āb̄) ≡ (A, ād̄), so for any c we can find an e such that (A, āb̄, c) ≡ (A, ād̄, e),

but then ((A, ā), b̄, c) ≡ ((A, ā), d̄, e). Suppose ((A, ā), b̄) ≡ ((A, ā), d̄), with the same properties. Then

(A, āb̄) ≡ (A, ād̄), so by strong λ-homogeneity we can find an automorphism of A fixing ā and sending

b̄ to d̄, and so it is the required automorphism of (A, ā).

8.1.7*. Show that the following are equivalent, where λ, µ are any cardinals with min(λ, ω) ≤ µ ≤ λ+.

(a) A is λ-saturated. (b) A is λ-homogeneous and µ-universal.

(a) implies (b) has been shown in the text. For (b) implies (a), it is clearly not true as stated, since

then for any infinite model, λ-homogeneous would imply λ-saturation, as ω-universality is trivial for

an infinite model. A counterexample to this is a language with κ many constants, and a structure A

which contains just the interpretations of the constants. Then A is λ-homogeneous for every λ, but

not λ-saturated for any λ. A is also κ-universal, since there are no models with cardinality < κ. Thus,

κ-homogeneous and κ-universal need not imply κ-saturated (as claimed on page 214). Moreover, if

κ = γ+, then A is actually γ-homogeneous and γ+-universal.

I prove instead that λ-homogeneous and λ+-universal implies λ-saturated, for |L| ≤ λ. Let A

be λ-homogeneous and λ+-universal, let X be any subset of A with |X | < λ, and let p be any

complete type over X . We show that p is realized in A. p is realized in some elementary extension

of A, B1, and we can form an elementary substructure of this extension, containing X and p, B2,

which we can assume to have size λ. Then B2 elementarily embeds into A, since A is λ+-universal.

Let g be the embedding. Since g is an isomorphism from B2 to g(B2), and g(B2) 4 A, we have

(A,X) ≡ (B1, X) ≡ (B2, X) ≡ (g(B2), g(X)) ≡ (A, g(X)). But then let b be the realization of p in B2.

Then there is some a such that (A,X, a) ≡ (A, g(X), g(b)), by λ-homogeneity, but then a realizes p.

8.1.8. Show that if A and B are elementarily equivalent structures and A is ω-saturated, then B is

ω-saturated if and only if it is back-and-forth equivalent to A.

Suppose B is ω-saturated. We show it is back-and-forth equivalent to A. We have (A, ā) ≡ (B, b̄),

and we wish to show that given c ∈ A, there is d ∈ B such that (A, ā, c) ≡ (B, b̄, d). (This is
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enough by symmetry.) tpA(ā, c/∅) is realized in B, since B is ω-saturated, say by b̄′, d′. Then by

ω-homogeneity (since B is ω-saturated), there is some d such that (B, b̄, d) ≡ (B, b̄′, d′) ≡ (A, ā, c).

For the converse, let p(x) be any type over b̄ = (b0, . . . , bm) some tuple in B. Let q(y0, . . . , ym, x)

be the type such that q(b0, . . . , bm, x) = p(x). Since A and B are back-and-forth equivalent, we can

find ā such that (A, ā) ≡ (B, b̄). By ω-saturation of A, we can find ā′, c′ ∈ A realizing q, and since

tpA(ā′) = tpB(b̄) = tpA(ā), we can find c ∈ A with ā, c realizing q, so by back-and-forth, we can find

d with (A, ā, c) ≡ (B, b̄, d), but then q = tpA(ā, c) = tpB(b̄, c), so tpB(c/b̄) = p.

8.1.9. Show that if (Ai | i < κ) is an elementary chain of λ-saturated structures and cf(κ) ≥ λ then
⋃

i<κAi is λ-saturated. Show the same for λ-homogeneity.

Let X be any set of size < λ in A =
⋃

i<κAi. Since cf(κ) ≥ λ, all of X is contained in some Aγ ,

γ < κ. Since Aγ is λ-saturated, every type over X is realized in Aγ , and hence in A.

Let (A, ā) ≡ (A, b̄), where ā and b̄ are sequences of fewer than λ elements of A. By the same cofinality

argument, we can find Aγ with both sequences contained in Aγ , and then use the λ-homogeneity of

Aγ , along with the fact that Aγ 4 A.

8.1.10. Show that the result of Exercise 9 fails for λ-bigness and strong λ-homogeneity.

Let A0 be a model with 2 equivalence classes, E1 and E2, both with size ω. Given Ai, let Ai+1 be an

extension with an additional element in E1. Let Aγ =
⋃

i<γ Ai for limits, and consider A =
⋃

i<ω1
Ai.

Then each Ai is ω-big, since given an n-ary relation, R, and some theory T extending Th(Ai), we can

find a countable model of T . This countable model must have two infinite equivalence classes, hence

each has size ω, and so the natural isomorphism extends Ai to a model of T . However, A is not strongly

1-homogeneous, since, if a ∈ E1 and b ∈ E2, (A, a) ≡ (A, b), but there is no automorphism taking a to

b.

8.1.11. Show that if L and L+ are languages with L ⊆ L+ and A is a λ-big L+-structure, then A|L

is a λ-big L-structure. Show the same for λ-saturation. On the other hand, show that if A is strongly

λ-homogeneous, it need not follow that A|L is λ-homogeneous.

For λ-big, apply Theorem 5.5.1. Let L′ extend L by one new relation, and let B be an L′-structure,

with (B, b̄)|L ≡ (A, ā)|L, for some ā, b̄ sequences of fewer than λ elements. We can assume b̄ = ā.

Then Theorem 5.5.1 tells us that there is an L′ ∪ L+-structure, D, which is an elementary extension

of A, and into which B elementarily embeds, with a map g in which g(ā) = ā. Then by λ-bigness, we

can make A into an L+ ∪ L′-structure, A′, such that Th(A′) = Th(D) ⊇ Th(g(B)) = Th(B). Then

A′|L′ gives an expansion of A|L, showing it is λ-big.

Suppose p is some type in L over X a set of < λ elements of A. We can extend p to a complete

type over L+, and so the extension is realized in A, and thus p is too.

Let A be a model with 2 equivalence classes, and a relation, R, which picks out one of the classes.
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Let L be the language with just the equivalence relation. Let one class have ω elements, and one have

ω1. Then A is strongly |A|-homogeneous, but A|L is not |A|-homogeneous.

8.1.12. Show that if L, L+ are first-order languages with L ⊆ L+, A is an L+-structure, A|L is λ-big,

and A is a definitional expansion of A|L, then A is λ-big. Show that the same holds for λ-saturation,

λ-homogeneity and strong λ-homogeneity.

Let L′ be L+ together with a new relation, R, and let B be an L′-structure such that (B, b̄)|L+ ≡

(A, ā) for some sequences b̄ and ā of fewer than λ elements. Since A is a definitional expansion of A|L,

and the property of being a definitional expansion is first-order, (B, b̄)|L+ is a definitional expansion

of (B, b̄)|L with precisely the same definitions. Let L′′ = L ∪ {R}. Then we can expand A|L to be an

L′′-structure such that (A, ā) ≡ (B, b̄)|L′′, since A|L is λ-big. Then, using the same definitions, A|L′′

can be expanded to be an L′-structure. Any sentence in Th(A|L′) is equivalent (in A|L′) to one in L′′,

and hence the corresponding sentence is true in B|L′′, and therefore is in Th(B), and vice versa.

If p is a type over a set X with |X | < λ in A, then p can be rewritten as a type in A|L, and so it

is realized.

If (A, ā) ≡ (A, b̄), with ā and b̄ sequences of fewer than λ elements in A, given c, we can find d ∈ A

such that tpA|L(āc) = tpA|L(b̄, d), but since A is a definitional expansion, the type in A|L uniquely

determines the type in A, so d works.

With the same starting conditions, we can find an automorphism, g, of A|L such that g(ā) = b̄.

Since every formula of L+ is equivalent to one in L, g must be an automorphism of A.

8.1.13*. Let L be a first-order language. Show that if A is a λ-big L-structure and φ(x) is a formula

of L such that φ(A) is the domain of a substructure B of A, then B is λ-big. Show that the same holds

for λ-saturation, λ-homogeneity and strong λ-homogeneity.

Suppose L+ is a language extending L, and D is an L+-structure, with (D, d̄)|L ≡ (B, b̄), for some

sequences of fewer than λ elements. Let Thφ(D) denote the theory of D relativized to φ (so every

quantifier is of the form ∀x ∈ φ or ∃x ∈ φ). Consider T = Th(A) ∪ Thφ(D). By Theorem 5.5.1 (the

extension of Craig’s Interpolation Theorem), if T is not consistent, there is some ψ ∈ L such that

Th(A) ⊢ ψ and Thφ(D) ⊢ ¬ψ. But Thφ(D|L) = Thφ(B) ⊆ Th(A), so this is impossible. Thus, T is

consistent, and so we can find some E realizing it. Then A can be extended to a model of Th(E), which

extends B to a model of Th(φ(E)) = Th(D).

Suppose p is a type in B over X , a set of fewer than λ elements in B. Relativizing p, we can extend

it to a type in A, q. q is realized in A, and q has the formula φ(x), so the realization is in B.

The final two claims are false. Let A be a model with 2 equivalence classes, E1 and E2, each

with ω1 elements, a unary relation, R, which is true on all of E1 and ω elements of E2, and a binary

relation S with S(a, b) true for a unique a ∈ E2, with ¬R(a), and every b ∈ E2. Then A is strongly ω1-

homogeneous, since the full type of an element x is given by the truth of the formulas R(x), ∃y(S(y, x)),
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∃y(S(x, y)). Let B be the substructure R(A). Then S is always false on B, and B is just the model

with two equivalence classes, one of size ω and one of size ω1, and so is not ω1-homogeneous.

8.1.14*. Show that if A and B are λ-big structures, then the disjoint sum of A and B is λ-big. Show

the same for λ-saturation, λ-homogeneity and strong λ-homogeneity.

The statement is false for λ-big. Let A = ω, with no structure, let B = ω1, with no structure. A

and B are clearly ω-big. Let D have universe ω1 +ω1, and a relation R which puts the ω1’s in bijection

with each other. Then D is a counterexample to A+B being ω-big.

Given a type p(x) over X ⊂ A +B, |X | < λ, p must determine if x lies in A or B. Then the type

is equivalent to the restriction of p to A (or B). But since A (B)has a realization of this restriction,

p is realized in A +B. A +B is certainly λ-homogeneous if A and B are, since given a sequence, the

type of a new element is completely determined by its type over the elements in the universe it came

from, and so we can find an element from that universe of the proper type by λ-homogeneity. Strong

λ-homogeneity follows similarly, noting that automorphisms of A and B extend to automorphisms of

A+B.

8.1.15*. Let L be a first-order language and A a saturated L-structure of cardinality > |L|. Show

that A is |A|-big.

Let λ = |A|. Note that we need only show that A is splendid, since (A, ā) is λ-saturated if ā has

fewer than λ elements, and so the conclusion will hold for it as well. Let L+ = L ∪ {R}, for some new

relation R, and let B be an L+-structure with B|L ≡ A. We can assume |B| = λ. Let 〈bi | i < λ〉

enumerate B. Build a chain of structures, 〈Bi | i < λ〉. First, let B0 be an elementary substructure

of B with |B0| = |L|. For each i, let Bi be an elementary substructure of B extending every Bj ,

j < i, and containing the first bk not in
⋃

j<i Bj . Then |Bi| = |L| + |i|. As well, B =
⋃

i<λ Bi. By

|A|+-universality, B0|L elementarily embeds into A, and hence maps onto an elementary substructure

of A of cardinality |B0|, C0. Let f0 be the embedding. Then f0 induces a structure on C0, making

it into an L+-structure. We construct a chain 〈Ci | i < λ〉 of L+-structures, |Ci| = |Bi|, with a chain

of elementary embeddings fi : Bi → Ci, and elementary substructures of A, Ai = Ci|L, such that

A =
⋃

i<λAi. C0 has been defined. Fix a well-ordering of A, like that of B above. We define Ci+1.

Let C′ be an amalgam of Ci and Bi+1 over Bi, in other words, Ci 4 C′, and there is an elementary

embedding g : Bi+1 → C′ with g(Bi) = fi(Bi) = Ci, pointwise. We can do this because the elementary

diagrams of Bi+1 and Ci are compatible. Now find an amalgam, C∗, of C′ and A over Ci such that C∗

is an L+-structure, with A 4 C∗ (as L-structures), and an elementary embedding h : C′ → C∗ with

h(Ci) = Ci, pointwise. Let a be the first element in the well-ordering of A fixed above which is not in

Ci. We can take an elementary substructure of C∗ of size |Bi+1| which contains h(g(Bi+1)) and a, C′
i+1.

Let D = C′
i+1 ∩ A. We know (C′

i+1, D)|L ≡ (A,D). Through an easy saturation argument, we can

elementarily embed C′
i+1 in A as an L-structure, fixing D, say by a map e. e induces an L+-structure
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on Ci+1 = e(C′
i+1) as before. Then ehg elementarily embeds Bi+1 in Ci+1 and all required properties

are satisfied. At limits there is nothing to do, and the final induced map gives a surjective elementary

embedding of B to A, which is therefore an isomorphism, and thus induces an L+-structure on A.

8.1.16. (a) Show that if L is a first-order language and λ > |L|, then an L-structure A is λ-saturated if

and only if it is λ-compact. (b) Show that every structure is ω-compact. (c) Show that for every infinite

cardinal λ, a λ-saturated structure is λ-compact. (d) Give an example of an |L|-compact L-structure

which is not L-saturated.

(c) and forward direction of (a): Let A be λ-saturated. Let p be a partial type over X , |p| < λ.

p mentions fewer than λ many elements of X , so we can consider p as a partial type over X ′, with

|X ′| < λ. Then any completion of p over X ′ has a realization in A, since A is λ-saturated.

(a) backwards: Let A be λ-compact, and let p be a complete type over X , with |X | < λ. Then

|p| < |X | + |L| < λ, so p has a realization.

(b): A type of size < ω is a finite set of formulas consistent with Th(A). There must be a witness

to their consistency in A, since Th(A) must say ∃x(. . .).

(d): If |L| = ω, then every L-structure is |L|-compact, so just choose a non-saturated one. Let L

consist of countably many distinct constants, and let A be the model consisting of just those constants.

Then A is not |L|-saturated.

8.1.17. Suppose the L-structure A is λ-compact, ā is a tuple from A, ψ(x̄, ȳ) is a formula of L and

Φ(x̄, ȳ) is a set of fewer than λ formulas of L. Show that if A |= ∀x̄(
∧

Φ(x̄, ā) → ψ(x̄, ā)), then there

is a finite subset Φ0 of Φ such that A |= ∀x̄(
∧

Φ0(x̄, ā) → ψ(x̄, ā)).

Suppose the then-clause is false. Then for every finite subset, there is a counterexample. Consider

the set of formulas {Φ0(x̄, ā) ∧ ¬ψ(x̄, ā) | Φ0 ⊆ Φ∧ |Φ0| < ω}. By λ-compactness, there is a witness to

this in A, which then contradicts the if-clause.

8.1.18. Let L be a countable first-order language and A a countable atomic L-structure. Show that

A is homogeneous.

A realizes only principal types. Thus, if (A, ā) ≡ (A, b̄), and some c is given, c satisfies some ϕ(x, ā)

which generates the type of c over ā. But ∃xϕ(x, b̄), since (A, ā) ≡ (A, b̄), so we can find d such that

(A, ā, c) ≡ (A, b̄, d).

8.1.19. Let L and L+ be first-order languages with L ⊆ L+. Let λ be an infinite cardinal such that the

number of symbols in the signature of L+ but not in L is less than λ. Show that if A is an L+-structure

and B is a λ-big L-structure such that A|L ≡ B, then B can be expanded to a structure B′ ≡ A.

We may certainly assume that all new symbols are relations, say 〈Ri | i < γ < λ〉. Add a binary

function to L+, f , which maps A × A injectively to A. Now, for any n-ary relation Ri ∈ L+, we

can replace it by a unary relation R′
i by defining R′

i(x) ⇔ x = f(y0, f(y1, f(. . . , f(yn−2, yn−1))) . . .) ∧
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Ri(y0, . . . , yn−1). Thus, we can assume that L+ \ L has only unary relations and one binary function.

Now replace these by one quaternary binary relation, S, and γ many constant symbols 〈ci | i < γ〉,

with the following properties: S(c0, x0, x1, x2) ⇔ f(x0, x1) = x2, and S(ci, x0, x1, x2) ⇔ R′
i(x0). Since

there are fewer than λ many constant symbols, and B is λ-big, we can enumerate the interpretations

of the constant symbols in A, and then find an expansion of B elementarily equivalent to A.

8.2.1. (a) Let T be a countable first-order theory with infinite models. Show that T has a countable

strongly ω-homogeneous model. (b) Show that if the continuum hypothesis fails, then there is a count-

able first-order theory with infinite models but with no strongly ω1-homogeneous model of cardinality

ω1.

(a) By Corollary 8.2.6, if A is a countable model of T , then there is an elementary extension of A

which is countable and strongly ω-homogeneous.

(b) Let T be the theory of a perfect tree in ω. Then any model of T with cardinality ω1, A, must

have at least one “branch,” but not every chain of nodes can define a branch, since there are 2ω of

them. Consider a countable chain of nodes with no branch at the end, H , and a countable chain with

a branch at the end, K. (A,K) ≡ (A,H) by a back-and-forth argument, but there is no automorphism

extending this equivalence, because the branch at the end of K cannot be mapped to anything.

8.2.2*. Let T be a complete theory in a countable first-order language. Suppose T has infinite models,

and there is a finite set of types of T , such that all countable models of T realizing these types are

isomorphic. Show that T is ω-categorical.

Let p1(x̄1), . . . , pn(x̄n) be the specified types. Adjoin new constants, ā1, . . . , ān to the language and

let T ′ = T ∪ {pi(āi) | i ≤ n}. By compactness, T ′ is consistent. Moreover, it is ω-categorical. But

then for every n, Sn(T ′) is finite. Since each type in Sn(T ) extends to at least one type in Sn(T ′), this

implies that Sn(T ) is finite, and hence that T is ω-categorical.

8.2.3. Show that if T is a countable complete first-order theory, then the number of countable models

of T , counted up to isomorphism, is not 2.

Suppose T is not ω-categorical. Then it has a non-principal type p(x̄). Suppose T had exactly 2

countable models. Then, since we have at least 2 from realizing p(x̄) and omitting p(x̄), those are all

of them. Thus, all countable models of T realizing p(x̄) are isomorphic, but then T is ω-categorical, so

actually T does not have 2 countable models.

8.2.4. Show that if 2 < n < ω then there is a countable complete first-order theory T such that up to

isomorphism, T has exactly n countable models.

Start with the theory of a dense linear ordering without endpoints. Add countably many constants,

〈ci | i < ω〉, with ci < cj (i < j). There are then three non-isomorphic models, all with universe Q,

determined by whether the ci’s are unbounded, have no sup in Q, or have a sup in Q. To get n > 3,
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add a “coloring” of Q with n− 2 colors, such that each color is dense in Q. Then the non-isomorphic

models are the first two, along with one for a sup of each possible color. Back-and-forth arguments

show in all these cases that these are the only non-isomorphic models, and also that these models are

non-isomorphic.

8.2.5. Show that Theorem 8.2.5 holds with ‘strongly λ-homogeneous’ in place of ‘λ-homogeneous.’

We reproduce the proof. By Theorem 8.2.1 we have a λ-big elementary extension B of A. Write

ν = (|A| + |L|)<λ, noting that ν ≥ λ. For every ā, b̄ sequences of length < λ such that (B, ā) ≡ (B, b̄),

fix an automorphism g taking ā to b̄. For D any elementary substructure of B of cardinality at most

ν, we can find a structure D∗ with D 4 D∗ 4 B so that if ā and b̄ are two sequences of elements of D,

both of length < λ, and (D, ā) ≡ (D, b̄), then there is an elementary embedding of D in D∗ such that

ā goes to b̄. We can find D∗ as the union of a chain of elementary substructures of B, 〈Di | i < ν〉.

Consider (ā, b̄) such that (D, ā) ≡ (D, b̄). The number of pairs is at most ν<λ = ν. For each such pair,

we have a specific automorphism of B chosen above, g, taking ā to b̄. List the ≤ ν automorphisms

as 〈gi | i < ν〉 such that every automorphism appears cofinally often in the sequence. Define D0 = D,

and limits are unions. With Di already defined, set Di+1 to be an elementary extension of Di inside

B containing gi(Di) of size ν. Let D∗ =
⋃

i<ν Di. D
∗ has size ν, and for any gi, gi(D

∗) = D∗, since

for any element a ∈ D∗, a ∈ Dj for some j < ν, and then a copy of gi appears above j, so gi(a) ∈ D∗.

Now we build a chain 〈Ai | i < λ〉 of elementary substructures of B, so that for each i < λ, Ai+1 =

A∗
i . A0 = A, and at limits, take unions. Let C =

⋃

i<λAi. Then C has cardinality at most λ · ν = ν.

As well, it is strongly λ-homogeneous, since given any ā, b̄ with length < λ, since λ is cofinal we can

find Ai containing both. Let g be the automorphism selected at the beginning for this ā and b̄. Let c

be any element in C. Then c ∈ Aj for some j ≥ i. Then g(c) ∈ Aj+1. Thus g maps C automorphically

to itself.

8.2.6*. Let L be a first-order language, T an ∀2 theory in L, A an L-structure which is a model of T

and λ a regular cardinal > |L|. Show that there is an e.c. model B of T such that A ⊆ B, |B| ≤ |A|<λ

and for every sequence b̄ of < λ elements of B, every e.c. model C of T extending B and every element

c of C, there is an element d of B such that (B, b̄, d) ≡1 (Cb̄, c).

We construct B in stages. Let κ = |A|<λ. List as (pi(x, ȳ), āi)i<κ all pairs (p, ā) where p is a partial

type containing only ∃1 ∪ ∀1 formulas of L, and ā is a sequence in A of length < λ. By induction on

i, define a chain of structures (Ai | i < κ) by: A0 = A. For limit ordinals, take unions. At successors,

if pi(x, ā) is realized for some C |= T , with C ⊇ Ai, choose C minimal with this property and set

Ai+1 = C, and Ai+1 = Ai otherwise. Note that we can ensure that |C| = |Ai|, since if C is too large,

take an elementary substructure realizing pi and containing Ai of size |Ai|. Define A∗ =
⋃

i<κAi. Then

|A∗| ≤ |A| · κ = κ. Now set A(0) = A, A(i+1) = A(i)∗, and take limits at unions. Put B =
⋃

i<λA
(i).

B |= T , since T is ∀2, and B is the union of several chains. B is e.c., since this construction includes
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the construction of Theorem 7.2.1. |B| ≤ λ · κ = κ. Finally, let C be any model containing B. Then,

since B is e.c., for any b̄ a sequence of fewer than λ elements in B, (B, b̄) ≡1 (C, b̄). Let c be any

element of C. Let p be the ∃1 ∪∀1 type of c over b̄. Since b̄ has fewer than λ elements and λ is regular,

b̄ is in A(i) for some i. Then p(x, b̄) is realized in A(i+1), by some d, so then (B, b̄, d) ≡1 (C, b̄, c).

8.2.7**. Let T be an ∀2 theory in a first-order language L. (a) Show that every model of T can be

embedded in some infinite-generic model of T . (b) Show that if A and B are infinite-generic models of

T with A ⊆ B then A 4 B (c) Show that if T is companionable, then the infinite-generic models of T

are exactly the e.c. models.

(a) Every model of T can be embedded in a model like B above, for some λ ≥ ω. B is existentially

universal, and thus infinite-generic.

(b) The key point will be that if M is an existentially universal (e.u.) model, and (M, ā, b̄) ≡1

(M, ā, c̄), then for any d ∈M , there is an e such that (M, ā, b̄, d) ≡1 (M, ā, c̄, e). To show this, suppose

we have elements as described, and let p(x, ā, b̄) be the ∃1∪∀1 type of d over āb̄. I claim that p(x, ā, c̄) is

consistent with T∪diag(M). Suppose not. By compactness, we can find θ(x, ā, c̄) ∈ p and quantifier-free

ψ(ā, c̄, ē) ∈ diag(M), with T ⊢ ψ(ā, c̄, ē) → ∀x¬θ(x, ā, c̄). Then T ⊢ ∀ȳz̄w̄(ψ(ȳ, z̄, w̄) → ∀x¬θ(x, ȳ, z̄)).

But since (M, ā, b̄) ≡1 (M, ā, c̄), we can find ē′ such that ψ(ā, b̄, ē′), so M |= ∀x¬θ(x, ā, b̄), which is

impossible. Thus, p(x, ā, c̄) is consistent with T ∪ diag(M). Hence, we can find a model of T , C,

containing M and realizing p, say by f ′. Since M is e.u., we can find f ∈M such that (M, ā, c̄, f) ≡1

(C, ā, c̄, f ′). Thus p(f, ā, c̄), and so (M, ā, b̄, d) ≡1 (M, ā, c̄, f).

Now, let A ⊆ B be infinite-generic models. Note that we can assume that B is e.u., since there is

some N e.u. with B 4 N , and so if A 4 N , then A 4 B. We show that if we have (A, ā) ≡1 (B, b̄), (ā

a tuple in A, b̄ a tuple in B), then for any c in B (A), we can find d in A (B) such that ≡1 still holds.

(A, ā) ≡1 (B, ā) through a compactness argument, since A 4 M , with M e.u. Thus (B, b̄) ≡1 (B, ā).

Thus, given c ∈ B, we can find c′ ∈ B such that (B, b̄, c) ≡1 (B, ā, c′). If A is e.u. as well, then we

can find d such that (A, ā, d) ≡1 (B, ā, c′), and thus (A, ā, d) ≡1 (B, b̄, c). If c is an element of A, then

(A, ā, c) ≡1 (B, ā, c), and so we can find d in B with (B, b̄, d) ≡1 (B, ā, c) ≡1 (A, ā, c). If A is not e.u.,

I don’t know.

(c) Let A be infinite-generic, and let B ⊃ A be any model of T containing A. B can be embedded

in an infinite-generic model of T , C, and A 41 C, so any existential formula with parameters in A and

a witness in B (and thus a witness in C), has a witness in A. Thus, A is existentially closed. If A is

existentially closed, we can embed A into an infinite-generic, B. But then, since the infinite-generic

is existentially closed, and the theory of e.c. structures of T is model complete, A 4 B, and so if M

is the existentially universal model of which B is an elementary substructure, A 4 M , and thus A is

infinite-generic.

8.3.1. Let T be a theory in a first-order language L and Φ(x̄) a set of formulas of L such that
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if f : A → B is any surjective homomorphism between models A,B of T and A |=
∧

Φ(ā) then

B |=
∧

Φ(b̄). Show that Φ is equivalent modulo T to a set Ψ(x̄) of positive formulas of L.

We prove Theorem 8.3.3(b) with φ replaced by Φ. Let Ψ be the set of all consequences of Φ in which

every relation symbol in Σ is positive. Let the number of free variables in Φ be < λ, with λ ≥ |L|. We

show that every model of
∧

Ψ(ā) is a model of
∧

Φ(ā). Let B be any model of T with B |=
∧

Ψ(b̄).

We can assume B is λ-saturated by taking an elementary extension, (which preserves whether or not
∧

Φ(b̄)). Now, if Θ is the set of all formulas in L in which every relation symbol in Σ is positive, let

ΘB = {θ | θ ∈ Θ ∧ θ(b̄) ∈ Th(B)} and let Θ̄(b̄) = {¬θ(b̄) | θ /∈ ΘB}. I claim that T ∪ Φ(ā) ∪ Θ̄(ā) has

a model, for ā a sequence of new constants. If not, then T ⊢ φ(ā) → (θ1(ā) ∨ . . . ∨ θn(ā)), for some

φ ∈ Φ, θi ∈ Θ̄, but the disjunction of positive formulas is positive, so it lies in Ψ, as a consequence of

Φ, and thus is true in B, so the θi’s cannot all be in Θ̄. Thus, the theory is consistent, and we can

find some λ-saturated model, A. (A, ā) ⇛Θ (B, b̄), and both are still λ-saturated, since there are fewer

than λ elements in the sequences, so by the lemma, there is a surjective homomorphism from some

elementary substructure of (A, ā) to some elementary substructure of (B, b̄). In the first elementary

substructure,
∧

Φ(ā), and so in the second,
∧

Φ(b̄), and thus in B.

8.3.2. Let L be a first-order language and Θ a set of formulas of L. If A,B are L-structures, we

write (A, ā) ⇛Θ (B, b̄) to mean that for every formula θ in Θ, if A |= θ(ā) then B |= θ(b̄). Show (a)

if Θ is closed under conjunction, disjunction, and both existential and universal quantification, and

A and B are λ-saturated L-structures with λ ≥ |L| such that A ⇛Θ B, then there are sequences ā,

b̄ in A, B respectively, both of length λ, such that ā, b̄ list the domains of elementary substructures

A′, B′ of A, B respectively, and (A, ā) ⇛Θ (B, b̄). (b) If Θ is closed under conjunction and existential

quantification, and A and B are L-structures such that A ⇛Θ B and B is |A|-saturated, then there

are sequences ā, b̄ in A, B respectively such that ā lists the domain of A and (A, ā) ⇛Θ (B, b̄).

(a) We build up ā and b̄ as in Lemma 8.3.4, such that for each i ≤ λ, (A, ā|i) ⇛Θ (B, b̄|i), and ā and

b̄ are domains of elementary substructures of A and B, respectively. Use an inductive game between

players ∃ and ∀. First we show that ∃ can always preserve the first condition. At the beginning,

A ⇛Θ B. At limits, there is nothing to do. So all we need to consider is the successor step, i = j + 1.

We have ā and b̄, both of length j, with (A, ā) ⇛Θ (B, b̄). We wish to extend them. Let ∀ choose

an element in A, aj . Let Φ(x̄, y) be the set of all formulas φ(x̄, y) in Θ such that A |= φ(ā, aj).

Thus, for any finite subset of Φ, φ0, . . . , φn−1, we have A |= ∃y
∧

i<n φ(ā, y). Since Φ is closed under

conjunctions and existential quantification, this formula is in Φ, and so, by inductive assumption,

B |= ∃y
∧

i<n φ(b̄, y) for every finite subset of Φ. But then, since B is λ-saturated, we can find bj

realizing this type, and this extends b̄ appropriately.

If ∀ chooses an element in B, bj, then let Φ′(x̄, y) be the set of all formulas ¬φ(x̄, y), with φ(x̄, y) ∈ Θ,

such that B |= ¬φ(b̄, bj). Form finite conjunctions as before. The negation of each conjunction is a

disjunction of universal quantifications of formulas of Θ, hence the negations are false in A, and so the
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conjunctions are true. Thus we can realize the type in A, by aj .

Now, in this process let ∀ make choices as follows: for every formula φ(ā|j, y) such that A |=

∃yφ(ā|j, y), at some point later on choose a witness, and likewise for B. Then by the Tarski-Vaught

criterion, ā and b̄ will be elementary substructures of A and B, so we are done.

(b) Modify the above process so that ∀ chooses only elements of A, to exhaustion. Note that all we

needed were conjunctions and existential quantification for that part of the proof.

8.3.3. Let L be a first-order language containing a 1-ary relation symbol P . Let A and B be

elementarily equivalent L-structures of cardinality λ. Suppose that B is saturated, but make the

following weaker assumption on A: if X is any set of fewer than λ elements of A and Φ(x) is a type

over X with respect to A, which contains the formula P (x), then Φ is realized in A. Show that there

is an elementary embedding f : A→ B which is a bijection from PA to PB.

We use the traditional construction by games. List the elements of A as 〈ai | i < λ〉, and of P (B)

as 〈bi | i < λ〉 (if P (B) is finite, this is trivial, and otherwise, it has size λ by saturation). Define a

chain of maps, 〈fi | i < λ〉. f0 can be the empty map. At stage i+ 1, let a be the first element not yet

mapped (not in dom(fi)). tpA(a/ dom(fi)) translates to a type in B over fi(dom(fi)). Then this type

is realized by some b by λ-saturation. Let fi+1(a) = b. Also, let b′ be the first element of P (B) not

mapped to yet. Perform the same procedure backwards to get a′ in A. Define fi+1(a
′) = b′. At limits,

take unions. Then
⋃

i<λ fi embeds A into B and maps P (A) bijectively onto P (B).

8.3.4. Let L be a first-order language, let A and B be |L|-saturated L-structures, and suppose that

every sentence of Th(A) which is either positive or ∀1 is in Th(B). Show that there are elementary

substructures A′, B′ of A, B respectively, a surjective homomorphism f : A′ → B′ and an embedding

e : B′ → A.

By Exercise 2, we can find A′, B′ such that there is a surjective homomorphism mapping A′ to B′.

B′ can be embedded in A because B′ ⇛1 A, by Theorem 8.3.1.

8.3.5. Let L be a first-order language and T a theory in L. Show that the following are equivalent,

for every sentence φ of L. (a) For every model A of T and endomorphism e : A→ A, if φ is true in A

then φ is true in the image of A. (b) φ is equivalent modulo T to a positive boolean combination of

positive sentences of L and ∀1 sentences of L.

For (a) implies (b), assume (b) is false. Then let B be a model with every positive and ∀1 conse-

quence of T and φ true, but not φ. By the usual arguments, we can find a model, A, in which φ is

true, but no extra positive or ∀1 consequences are. Then the endomorphism defined by composing the

two maps above maps A to a model in which φ is false, since the second map embeds an elementary

substructure of B. Thus, (a) is false.

For (b) implies (a), let ψ1, . . . , ψn be positive/∀1 sentences which can be combined to yield φ. Let e

be any endomorphism of A. e is surjective on its image, and so e preserves all of the positive sentences
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among the ψ’s. As well, since e(A) ⊆ A, ∀1 sentences are preserved. Thus, φ is true in e(A) iff φ is

true in A.

8.3.6*. Let L be a first-order language whose symbols include a 2-ary relation symbol <, and let T be

a theory in L and φ(x̄) a formula of L. In the terminology of Exercise 2.4.5, show that the following

are equivalent. (a) If A and B are models of T and A is an end-extension of B, then for every tuple b̄

of elements of B, B |= φ(b̄) implies A |= φ(ā). (b) φ is equivalent modulo T to a Σ0
1 formula ψ(x̄) of L.

(a) implies (b): We reverse the notation, so B is an extension of A. If B is an end-extension of

A, then for every a in A, if A |= c < a, then c is in A. Note that Σ0
1 formulas are closed under

existential quantification, conjunctions and disjunctions. By adjoining constants, we can assume that

φ is a sentence. Let Ψ be all of the ∃1 consequences of φ, and let B0 be a model of T with B |=
∧

Ψ.

Let λ > |L| be a regular cardinal. Let B be a λ-saturated elementary extension of B0. By the usual

compactness argument, we can find A0, a model of T and ψ, such that no ∃1 sentence not in Φ is true

in A0. Now extend A0 to an λ-saturated model, A. We now play a game between A and B to get

A′ 4 A and B′ 4 B with an embedding from A′ into B′, such that B′ end-extends the image of A′. We

first show that ∃ can always win the usual game. Suppose, for i < λ, that ā(i) from A, b̄(i) from B, and

Ci a subset of B have been chosen already, with (A, ā(i)) ⇛Σ0
1

(B, b̄(i)). Let ∀ choose ai ∈ A. Let p be

the Σ0
1 type of ai over ā(i). It is clear that p is finitely satisfied over b̄(i), and thus that it is satisfied in

B, by b, so ā(i+1) = ā(i) a ai and b̄(i+1) = b̄(i) a b. Ci+1 = Ci. Now suppose ∀ chooses bi in B. Let

Θ(ȳ) = {¬θ(x, ȳ) | B |= θ(bi, b̄(i)) ∧ θ ∈ Σ0
1}. If Θ(ā(i)) is finitely satisfiable in A, then it is satisfiable,

so let a be a realization, and let ā(i + 1) = ā(i) a a and b̄(i + 1) = b̄(i) a bi, Ci+1 = Ci. Suppose

Θ(ā(i)) is not finitely satisfiable in A. Then we can find θ such that A |= ∀xθ(x, ā(i)), where θ is a Σ0
1

formula whose negation is in Θ. If ¬bi < b for every b ∈ b̄(i), let Ci+1 = Ci ∪ {bi}, ā(i + 1) = ā(i),

b̄(i+ 1) = b̄(i). Now assume bi < b, for some b ∈ b̄(i). Then B satisfies the formula ∃x < b(θ(x, b̄(i))).

But then, since this formula is Σ0
1, so does A, which is a contradiction. Thus, ∃ can always extend the

map or append an element to C. The game can thus be played to λ-many steps, yielding A′ =
⋃

i<λ ā(i)

and B′ =
⋃

i<λ b̄(i) ∪ Ci.

We now give instructions to ∀. For convenience, let there be three ∀ players, ∀A, ∀B , and ∀C .

Each is assigned a cofinal sequence in λ. If it is ∀B’s turn at i+ 1, he considers all formulas such that

A |= ∃xϕ(x, b̄), for b̄ ⊆ b̄(i)∪Ci, consistently well-ordering them. For the first one in his list, he chooses

a witness from B, bi. Likewise for ∀A (without the Ci). ∀C ’s job is different. He keeps track of the

elements in C, and maintains a well-ordered list of elements c such that for some b ∈ b̄(i), c < b, but

c /∈ b̄(i). Every time a choice is made that gives more elements in C this property, he adds them on to

the end of the list. Since |Ci| ≤ i, his list always has length < λ. When it is his turn, he chooses the

first element on the list, which permanently removes it since a match is found. Every element on his list

has index < λ, and he has λ many opportunities, so each will be taken care of. This procedure results

in an end-embedding of A′ into B′, with A′ and B′ elementary embeddings of A and B respectively.
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Thus, φ is true in B′, thus in B, and thus in B0. Therefore, by compactness, some positive boolean

combination of the Σ0
1 consequences of φ imply it, and so φ is equivalent to a Σ0

1 formula.

(b) implies (a) is Exercise 2.4.5.

8.3.7*. Let L be a first-order language whose symbols include a 2-ary relation symbol <, and let T

be a theory in L which implies ‘< linearly orders the set of all elements, with no last element.’ Recall

from Exercise 2.4.9 the notion of a cofinal substructure; let Φ be defined as in that exercise, except that

the formulas in Φ are required to be first-order. Show (a) if A and B are models of T , A and B are

|L|-saturated and A ⇛Φ B, then there is an embedding of an elementary substructure A′ of A onto a

cofinal substructure of an elementary substructure B′ of B, (b) if φ is a formula of L, and f preserves

φ whenever f is an embedding of a model of T onto a cofinal substructure of a model of T , then φ is

equivalent modulo T to a formula in Φ.

(a) First, note that the statement is incorrect. To see this, let L = {<, }, and let A be Q with

P (A) dense in A, and B be Q with B |= ∀xP (x). Then both A and B are |L|-saturated, and both

admit elimination of quantifiers. Thus, A ⇛Φ B. However, any elementary substructure of A includes

elements such that ¬P (x) is true, and thus those elements cannot map to elements in B. The reversed

statement, however, is true: if B ⇛Φ A, then the conclusion follows. This is what I prove. Just for

fun, I also make B and A |L|+-saturated.

We have ∃ and ∀ play a game similar to the one above. After stage i, we have ā(i), b̄(i), and Ci as

above, with (B, b̄(i)) ⇛Φ (A, ā(i)). Let ∀ choose ai. Then let Θ(x, ȳ) = {¬θ(x, ȳ) | A |= θ(a, ā(i))∧ θ ∈

Φ}. If Θ(x, b̄(i)) is finitely satisfiable, it is satisfiable, so we can choose b satisfying it. If not, then we

have B |= ∀x
∨

j<n θi(x, b̄(i)). But it is easy to see that this sentence is in Φ, and thus true in (A, ā(i)),

which is impossible. Now let ∀ choose bi. Then let Θ(x, ȳ) = {θ(x, ȳ) | A |= θ(a, ā(i))∧ θ ∈ Φ}. If Θ is

finitely satisfiable, append the realization, as usual. Otherwise, just append it to Ci.

Now, we specify what ∀ is doing. As before, there are three ∀s. The first two are doing the same

as before. The third, ∀C , has the following task. He keeps a well-ordered list of Ci. When it is his

turn, he takes the first c such that c > b for every b ∈ b̄(i). Now he tries to find a such that a can be

mapped to an element b > c. He does this as follows. Choose a random a. By the above argument, we

can certainly find a b such that (B, b̄(i), b) ⇛Φ (A, ā, a). However, suppose there is no such b for b > c.

By compactness then, we can write B |= ∀x > c(θ(x, b̄(i))). Thus, B |= ∃z∀x(z < x→ θ(x, b̄(i))). This

means that A satisfies the same sentence. Let a1 be the witness for z. Now repeat with some choice

a > a1. After λ-many steps, we will either have found an a, or run out of formulas, thus finding an a.

Now let ∀C choose the corresponding b. Then ∃ will find an a to map b to, and we will no longer have

b < c for b ∈ b̄(i).

(b) Let A be an |L|+-saturated model of the Φ-consequences of φ. We can find B, an |L|+-model

of φ, with no new formulas of Φ true in it. Then the above procedure shows that φ is true in A.
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8.3.8. Let L be a first-order language whose symbols include a 2-ary relation symbol R, and let T be

a theory in L. Suppose that T implies that R expresses a reflexive symmetric relation. If A is a model

of T , we define a relation ∼ on dom(A) by ‘∼ is the smallest equivalence relation containing RA. A

closed substructure of A is a substructure whose domain is a union of equivalence classes of ∼. We

define Θ to be the least set of formulas of L such that (i) Θ contains all quantifier-free formulas, (ii) Θ

is closed under disjunction, conjunction and existential quantification, and (iii) if φ(x̄yz) is in Θ, and

y occurs free in φ, then the formula ∀z(Ryz → φ) is in Θ. Show (a) if A and B are models of T , A

and B are |L|-saturated and A ⇛Θ B, then there is an embedding of an elementary substructure A′

of A onto a closed substructure of an elementary substructure B′ of B, (b) if φ is a formula of L, and

f preserves φ whenever f is an embedding of a model of T onto a closed substructure of a model of T ,

then φ is equivalent modulo T to a formula in Θ.

(a) The argument is much the same as in 8.3.6. The only difference for ∃ is when ∀ chooses an

element of B, bi. As before, if Φ(x, ȳ) = {¬θ(x, ȳ) | θ ∈ Θ∧B |= ¬θ(bi, b̄(i))} is finitely satisfiable in A

over ā(i), then there is no problem. Otherwise, if for every b ∈ b̄(i), ¬Rbbi, then add bi to Ci. Finally,

if Rbkbi for some bk ∈ b̄(i), then write A |= ∀xθ′(x, ā(i)) with B |= ¬θ′(bi, b̄(i)) (since Θ is closed under

disjunctions), and then A |= ∀x(Rakx → θ′(x, ā(i))), but since (A, ā(i)) ⇛Θ (B, b̄(i)), B satisfies the

corresponding sentence, which is impossible.

∀C is the only player whose procedure changes. He keeps a consistent well-ordered list of elements

of Ci such that for some b ∈ b̄(i), Rcb but c /∈ b̄(i). When it is his turn, he chooses the first such c.

The end result will be as desired.

(b) The argument is the same as 8.3.6.

8.3.9. Let φ be the sentence ∃xy(Rxy ∧ ∀z(Rxz → ∃t(Rxt ∧ Rzt))). Show (a) if a structure A is a

homomorphic image of a model of φ, then A contains elements ai (i < ω), not necessarily distinct,

such that A |= R(a0, ai) ∧ R(ai, ai+1) whenever 0 < i < ω, (b) if a structure B contains arbitrarily

long finite sequences like the sequence of length ω in (a), then some elementary extension of B is a

homomorphic image of a model of φ, (c) by (a) and (b), the class of homomorphic images of models of

a first-order sentence need not be closed under elementary equivalence.

(a) Work in the model C with A a homomorphic image of C. Find a witness for x in φ, c0, and for

y, c1. Given (c0, . . . , ci), find ci+1 by setting z to ci in φ, and letting ci+1 be a witness. Then we can

continue this to a sequence 〈ci | i < ω〉. The image of this sequence in A is then the desired one.

(b) By compactness, extend B to an elementary extension B′ with a sequence of length ω. Let

〈bi | i < ω〉 be the sequence in B′. Let C be the same model as B′, except that for any c1, c2 ∈ C,

Rc1c2 if and only if either c1 = b0 and c2 = bi for some i ∈ ω, or c1 = bi and c2 = bi+1 for some i ∈ ω.

Then C |= φ, and B′ is a homomorphic image of C.

(c) Let B be ω∗, and R the usual ordering. Then B has no infinite ascending sequences, and

so is not the homomorphic image of a model of φ, but some elementary extension is, so elementary
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equivalence does not preserve the property.

8.4.1. Let L be a countable first-order language, T a theory in L and φ(x), ψ(x) formulas of L.

Suppose that for every model A of T , |ψ(A)| ≤ |φ(A)| + ω. Show that there is a polynomial p(x) with

integer coefficients, such that for every model A of T , if |φ(A)| = m < ω then |ψ(A)| ≤ p(m).

By Vaught’s two-cardinal theorem, ψ(x) ≤ φ(x), since if not, we can find a model, A, where

|ψ(A)| = ω1 and |φ(A)| ≤ ω. Thus, we can layer ψ by φ. Let the layering be θ(x), in the form given

in equation (4.3). Let A be a model of T in which φ(A) is finite.

For each a ∈ ψ(A), for some k < n, θ(a) is satisfied with a = zk. Make n sets Pk ⊆ ψ(A), containing

all a’s of this form. We make m subsets of each Pk as follows. For each b ∈ φ(A), let Pk(b) be the

subset of Pk such that θ’s satisfaction uses b for y0. There are thus m subsets. Restrict to one of these.

Now, if ∃z0η(y0, z0), then there is a unique z0, say c0. Otherwise, choose any c0. Then subdivide

further into m sets based on what value y1 takes. Repeating, in the end we have ηk(b0, c0, . . . , bk, zk),

with only one solution for zk. Thus, after dividing into m subsets k+ 1 times, each subset can have at

most one element. Thus, |Pk| ≤ mk+1, so |ψ(A)| ≤
∑

i<n m
i+1.

8.4.2. Let L be a first-order language, T a complete theory in L with infinite models, and φ(x), ψ(x)

formulas of L. By a stratification of ψ over φ in a model A of T we mean a formula σ(x, y) of L with

parameters from A, such that A |= ∀x(ψ(x) ↔ ∃y(σ(x, y)∧φ(y))); we call the stratification σ algebraic

if for every element b of φ(A), the set {a | A |= σ(a, b)} is finite. Show (a) even when ψ ≤ φ, there

need not be an algebraic stratification of ψ over φ in any model of T , (b) if A is a model of T , ψ ≤ φ

and ψ(A) is infinite, then there are a formula ρ(x) of L with parameters from A such that ρ(A) is an

infinite subset of ψ(A), and an algebraic stratification of ρ over φ in A.

(a) Let T be the theory of an infinite set and pairs of elements of the set. We have 2 “sorts,” picked

out by unary F and G, and relations comp0, and comp1 on G × F picking out each component. Let

φ(x) be F (x), and let ψ(x) be G(x). Then clearly |φ(A)| = |ψ(A)| for every A |= T . Moreover, if

ρ(x, y) is any formula, it is easy to translate ρ into a formula in the empty language, and then eliminate

quantifiers. Thus, ρ(x, y) can be rewritten as ρ′(x0, x1, y), quantifier-free, in the empty language. Now

suppose that for every b, ρ′(x0, x1, b) is finite. Then ∃x1ρ
′(x0, x1, b) is finite. Thus, by eliminating

quantifiers again, any x0 satisfying this formula must be b. Likewise for x1. Thus, (b, b) is the only

element satisfying ρ′(x0, x1, b). Thus, there are some (a, b) disproving that ρ is a stratification.

(b) Let θ(x) be a layering of ψ by φ, with the usual form for θ. Write θk(x, y0, z0, y1, . . . , zk−1, yk) for

the formula which results if we delete everything up to (∃yk ∈ φ) inclusive. There are now n cases. Case

i is: i is the least number such that for each b ∈ φ(A) there are only finitely many a ∈ ψ(A) such that

A |= θi(a, b0, c0, b1, . . . , b), where for j < i {a | A |= θj(a, b0, c0, b1, . . . , bj)} is infinite, and cj for j < i is

always either the unique element such that A |= η(b0, c0, . . . , bj, cj) if there is such an element, or some

arbitrary element otherwise. Then put ρ = θi−1(x, b0, c0, . . . , bi−1), and σ(x, y) = θi(x, b0, c0, . . . , y) (if
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i = 0, put ρ = ψ). We verify that these choices work. By the first sentence, there are only finitely

many solutions to σ(x, b) for any b. By the second sentence, ρ is infinite. By the layering, if ρ(x), then

θ(x), so ψ(x), and by the definitions, A |= ∀x(ρ(x) ↔ ∃y(σ(x, y)∧φ(y))). It remains to be shown that

one of these cases is true. But as we consider each θj(x, b0, c0, . . . ,−), either there is or isn’t a b which

gives infinitely many solutions. If there isn’t, we are done here, and if not, set bj = b and move on.

Suppose we have done this for every case. Then we have b0, c0, . . . , bn−1 such that θ(x, b0, c0, . . . , bn−1)

has infinitely many solutions in ψ. Then, choosing cn−1 according to the usual procedure, we have a

contradiction, since x must be equal to some ci.

9.1.1. Give an example to show that if F is an EM functor and f : ω → ω an order-preserving map,

F (f) : F (ω) → F (ω) need not preserve ∀1 first-order formulas.

Let F be the identity map, so F (η) = (η,<η). Let f : ω → ω be the map f(i) = i + 1. But the

map i→ i+ 1 does not preserve the formula ∀y(y = x ∨ y > x), since 0 maps to 1.

9.1.2. Show that if T is any first-order theory with infinite models and G is a group of automorphisms

of a linear ordering η, then there is a model A of T which contains η, such that G is the restriction to

η of a subgroup of Aut(A). In particular show that T has a model on which the automorphism group

of the ordering (Q, <) of the rationals acts faithfully.

We can find an EM functor to models of T , F . Consider A = F (η). Let f be any automorphism

of η. Then F (f) extends to an embedding of A into A, which is onto since f is onto, and is thus an

automorphism. Thus, F (Aut(η)) ⊆ Aut(A).

9.1.3. Let F be an EM functor in the first-order language L, with skolemised theory. Show that if η is

any infinite linear ordering and X is any set which is first-order definable in F (η) without parameters,

then X has cardinality either |η| or ≤ |L|.

Let ϕ(x) define X . Since we have a skolem theory, ϕ(x) is quantifier-free. Consider any a ∈ X .

Write a = t(c̄) for some increasing tuple c̄ in η. Then ϕ(t(x̄)) ∈ Th(F ). Thus, t(d̄) ∈ X for any

increasing tuple d̄ in η. The question is now whether t(x̄) = t(ȳ) for all increasing tuples x̄, ȳ in η.

However, there are several possible orderings for x̄ and ȳ when considered as a single increasing tuple

(x1 < x2 < y1 < x3 < y2 < . . .). On the other hand, there are only finitely many. If for any such

ordering we have t(x̄) 6= t(ȳ) ∈ Th(F ), then clearly |X | = |η|. If not, then this term adds a unique

element to X . Thus, if there is any a ∈ X such that its terms are all unique, then |X | = |η|, and if

every a is the result of a unique term, then X is bounded by the number of terms, or |L|.

9.1.4. Let L and L+ be first-order languages with L ⊆ L+ and suppose every symbol in L+ but not

in L is a relation symbol. Let F be an EM functor in L and T an ∀1 theory in L+ which is consistent

with Th(F (ω)). Show that there is an EM functor F+ in L+ such that for each linear ordering η,

F+(η) is a model of T and F (η) = F+(η)|L.
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We show that there is a way to extend F to the required F+. By Theorem 9.1.4, we need only

define F+(ω). Let λ = |L+ \ L|. Enumerate the relations 〈Ri | i < λ〉. Let Li = L ∪ {Rj | j < i}.

We construct a sequence of models, 〈Ai | i < λ〉, such that Ai is an Li-structure containing ω as a

sequence of generators which is indiscernible for atomic formulas of Li, Ai|Lj = Aj , and Th(Ai) is

consistent with T . Set A0 = F (ω). Proceed by induction. At limit stages, take “unions.” We are

left with the successor case, k = i + 1. Let A = Ak. Let R = Rk. Let n be the arity of R. All

we need to specify about A is the following: for every t1(x̄1), . . . , tn(x̄n) terms of L+ (also terms of

L), we must decide whether θ = R(t1(x̄1), . . . , tn(x̄n)) is true for every increasing tuple of ω, since

knowing all of this completely determines RA. (Note that θ is dependent on the ordering of the x̄j ’s,

so there are finitely many versions for each choice of the tj ’s). Let 〈θj | j < |L|〉 be an enumeration

of these θ’s. We define 〈Uj | j < |L|〉, a chain of sets of sentences of Lk(Ai). Then U =
⋃

j<|L| Uj

will specify RA. We will ensure U is consistent by making each Uj consistent with T , will make sure

that each Uj preserves the indiscernibility of ω, and will also prove that Th(A) is consistent with T .

U0 = diag(Ai). Then U0 is consistent with T : if not, then T ⊢ ¬ϕ(ā), where ϕ(ā) ∈ diag(Ai). But then

T ⊢ ∀x̄¬ϕ(x̄), while Th(Ai) ⊢ ∃x̄ϕ(x̄), which is impossible, since Th(Ai) and T are consistent. Limits

are unions, so all that remains is the successor case. If T ⊢ θj (or if T ⊢ ¬θj), then define Uj+1 to be

Uj together with θj(ā) (or ¬θj(ā)) for every ā an ascending tuple in ω. We show Uj+1 is consistent.

Assume not. Then (say) Uj ⊢ θj(ā). But by assumption, Uj is consistent with T , and T ⊢ ∀x̄¬θj(x̄),

so this is impossible. The other case is handled the same way. Now, assume T does not decide θj . If

there is some sentence in Uj of the form θj(ā) (or ¬θj(ā)) for some ā in ω, then by indiscernibility,

Uj decides θj , so Uj+1 is made in the obvious way. If none of the above cases occur, let Uj+1 be Uj

together with θj(ā) for every ā an ascending tuple in ω. Suppose Uj+1 is not consistent with T . Then

T ⊢ ¬θj(ā1) ∨ · · · ∨ ¬θj(ām), for some ā1, . . . , ām increasing tuples in ω. By the lemma on constants,

T ⊢ ∀x̄1, . . . , x̄m(¬θj(x̄1) ∨ · · · ∨ ¬θj(x̄m)), but this clearly implies T ⊢ ∀x̄¬θj(x̄), so T did decide θ.

Now, let U =
⋃

j<λ Uj . U specifies RA, so we have now defined A. We must verify that Th(A) is

consistent with T . Suppose not. Since T is ∀1, we have Th(A) ⊢ ∃x̄θ(x̄), for some θ quantifier-free,

with T ⊢ ∀x̄¬θ(x̄). Let (t1(ā), . . . , tm(ā)) be witnesses in A, with ā some increasing tuple in ω. Then

Th(A) ⊢ θ((t1(ā), . . . , tm(ā))). Writing θ as a disjunction of conjunctions, we can further reduce to

the case that θ is a conjunction (since these terms satisfy one specific conjunction in the disjunctions).

But then θ is a conjunction of sentences in U , and U is consistent with T , contradiction.

Let B =
⋃

i<λ Ai. Then B|L = F (ω), B |= T , and ω is a sequence of generators which is indis-

cernible for atomic sentences. Then there is a unique F+ such that F+(ω) = B. Since T is ∀1, for

any η, F+(η) will be a model of T . For every η, F+(η)|L = F (η), since if not, we can use a sliding

argument to translate the discrepancy into F (ω) and F+(ω)|L, which are the same.

9.1.5*. Let L be a first-order language containing a 2-ary relation symbol < , and A an L-structure

such that <A linearly orders the elements of A in order-type κ for some infinite cardinal κ. Writing η for

90



the ordering (domA,<A), show that Th(A, η) contains the following formulas: (i) ‘< linearly orders the

universe’ and x0 < x1; (ii) for each term t(x0, . . . , xn−1) of L, the formula t(x0, . . . , xn−1) < xn; (iii) for

each term t(x0, . . . , xn−1) of L and each i < n, the formula t(x0, . . . , xn−1) ≤ xi → t(x0, . . . , xn−1) =

t(x0, . . . , xi, xn, xn+1, . . . , x2n−(i+2)).

‘< linearly orders the universe’ is ∀xy((x < y ∨ y < x∨ y = x)∧ (x < y → (¬y < x∧¬y = x)∧ x =

y → ¬x < y)). Since it is true in A, it is in Th(A, η). x0 < x1 is in Th(A, η) since every increasing

pair is just that.

The second statement is false, as seen by considering (ω, S,<), where S is the successor function,

and Sx0 < x1. When x1 = Sx0, it is not true. The third statement is also incorrect: to contradict the

original, consider (ω,+,−, <), where − is the modified − function. Then consider x0 + x1 + x2 − x3.

For the choice (1, 2, 3, 5), we have x0 + x1 + x2 − x3 ≤ x0. But 1 6= 1 + x4 + x5 − x6 for every choice of

x4, x5, x6 ∈ ω, in particular, (1, 2, 3, 5, 6, 7, 8) contradicts this formula.

Modify the problem by adding the condition η is an indiscernible sequence with respect to atomic for-

mulas. Now consider t(x0, . . . , xn−1). For a given a0, . . . , an−1 an increasing tuple in A, t(a0, . . . , an−1)

is some element. SinceA has order type κ, there is some element of A above max(t(a0, . . . , an−1), a0, . . . , an−1).

Choosing this element for an, we have t(a0, . . . , an−1) < an, and thus by indiscernibility, condition (ii).

For (iii), find a′0, . . . , a
′
n−1 such that the if-clause holds, otherwise the formula is trivially in Th(A, η).

Set b = t(a′0, . . . , a
′
n−1). Assume b 6= aj for any j ≤ i. Rename the a′is and b so that we have

a0, . . . , an, with b = ak for some k ≤ i. Choose arbitrary an+1, . . . , a2n−i+3. By indiscernibility,

t(a0, . . . , ak−1, ak+1, . . . , ai+1, an+1, . . . , a2n−i+3) = ak, so we are done. If b = ak, for some k ≤ i, then

no renaming is necessary, as t(a′0, . . . , a
′
i, an, . . . , a2n−i−2)) = a′k by indiscernibility.

9.1.6*. Let L be a first-order language containing a 2-ary relation symbol < and F an EM functor

for L which contains all the formulas (i)-(iii) of the preceding exercise. Show that if λ is any infinite

cardinal, then in F (λ) there are no <-descending sequences of length |L|+, the spine is cofinal and no

element α of the spine has more than |α| + |L| predecessors in the <-ordering.

The first and third claims are incorrect as given. Let F (ω1) be (ω∗
1+ω1, <, f), where ω∗

1 is the reverse

of ω1, and f is a unary function taking i ∈ ω1 to i ∈ ω∗
1 and vice versa. Then ω1 is a set of generators of

F (ω1), and is indiscernible with respect to atomic formulas, but there is a descending sequence of length

ω1 > |L|. This model also gives a counterexample to the third claim. To fix this, we could add the

following formula to (iii): t(x0, . . . , xn−1) < xi → t(x0, . . . , xn−1) = t(x0, . . . , xi−1, xn, . . . , x2n−i−1). It

is in (A, η) by the same arguments. However, this does not fix the problem with the first statement:

consider the structure with universe ω2 ∪ {(α, β) | β < α ∈ ω2}, ordered by the usual ordering on

ω2, the lexicographic ordering with the second coordinate reversed on (α, β) (so (α, β) < (α + 1, γ),

and (α, β) > (α, β + 1)), and α < (α, β) < α + 1. As well, let f(α, β) = (α, β) with β < α ∈ ω2,

and f(a, b) = a otherwise. This ordering consists of ω2 with a reversed copy of each ordinal inserted

between it and its successor. ω2 is a generating set, and an indiscernible sequence with respect to
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atomic formulas, but there is a descending sequence of length ℵ1.

The second statement is trivial, since t(x0, . . . , xn−1) < xn.

The third statement, with the modified (iii), goes as follows. Let X be the set of all predecessors

of α. By (iii), for any b ∈ X , if b = t(ā), with every element in ā ≥ α, then t is a constant term on

λ, so there are at most |L| such elements in X . There are at most α<ω ≤ α + |L| elements in X of

the form t(ā) with every element in ā ≤ α. Thus, this leaves only elements of the form t(a0, . . . , an−1)

with a0, . . . , ai−1 ≤ α, and ai, . . . , an−1 > α. But then by (iii), a0, . . . , ai−1 determine the value of t,

and there are only αi ≤ α+ |L| possibilities.

9.2.1. Show that a minimal set remains minimal if we add parameters; likewise with ‘strongly minimal’

for ‘minimal’.

Since the formulas we can use are allowed to have parameters from the model, adding parameters

to the language changes nothing.

9.2.2. Give an example to show that the notion ‘algebraic over’ need not obey the exchange law.

Let L be the language with one unary function symbol, f , and let A = ω ⊕ ω, with f(i, j) = (i, 0).

Then acl(∅) = ∅, (1, 0) ∈ acl((1, 1)), but (1, 1) /∈ acl((1, 0)).

9.2.3. Let G be a group. We define a G-set to be an L-structure A as follows. The signature is a

family of 1-ary functions (Fg | g ∈ G); the laws ∀xFgFh(x) = Fgh(x), ∀xF1(x) = x hold in A. We

say A is a faithful G-set if for all g 6= h in G and all elements a, FA
g (a) 6= FA

h (a). (a) Show that the

class of faithful G-sets is first-order axiomatisable, in fact by ∀1 sentences. (b) Show that if A is an

infinite faithful G-set, then A decomposes in a natural way into a set of connected components and

each component is isomorphic to a Cayley graph of the group G (see Exercise 4.1.1 above). (c) Deduce

that every infinite faithful G-set is strongly minimal, and its dimension is the number of components.

(a) The axioms given above are easily seen to be ∀1.

(b) We first show that if A is a faithful G-set, then the above axioms, denoted by T , are model-

complete, by Lindström’s test. We must show that T is λ-categorical for some λ ≥ |L|. We construct an

isomorphism between any two infinite models M |= T and N |= T with |M | = |N | > |G|. Enumerate

M as (a0, a1, . . .), and N as (b0, b1, . . .). To start, we have M ≡0 N, since there are no quantifier-free

sentences. Map a0 to b0. This induces a mapping of |G| elements of M to |G| elements of N , which will

respect the Fg’s, so we will have (M, a0, . . .) ≡0 (N, b0, . . .). Since |N | > |G|, there is a first element of

N not yet mapped to, bi. Map it to the first element of M not yet mapped to. Continue this process.

We get an isomorphism. Thus, by Lindström’s test, T is model-complete. Moreover, it is easy to see

that models of T∀(= T ) have the amalgamation property. Thus, by Theorem 7.4.1, T has quantifier

elimination. This means that if b is algebraic over a, it is in fact equal to Fg(a), for some g ∈ G. Thus,

we can break A into its connected components, {X | X = acl(a), a ∈ A}. Each X looks like a copy of

G with the Fg’s acting on it, and so is precisely the Cayley graph.
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(c) By quantifier elimination, any formula clearly defines a finite or cofinite set, so a faithful infinite

G-set is strongly minimal. Since a set with one element from each component has algebraic closure the

entire structure, and no smaller set can possibly work, the dimension is the number of components.

9.2.4*. Let A be an L-structure, Ω a ∅-definable minimal set in A, (ai | i < λ) a sequence of elements

of Ω, X a set of elements of A and b̄ a sequence listing the elements of X . Show that the following are

equivalent: (a) (ai | i < γ) is independent over X ; (b) for each i < γ, ai /∈ acl(X ∪ {aj | j < i}); (c)

ai 6= aj whenever i < j, and {ai | i < γ} is an independent set in (A, b̄).

I see no difference between (a) and (c). We show (a) is equivalent to (b). It is clear that (a) implies

(b). Assume (a) is false. Then let ai ∈ acl(X ∪ {aj | j 6= i}). Let ϕ(x, ā) (with other parameters in X)

be a formula witnessing this with ā a tuple of aj ’s, and minimal with respect to the length of ā among

all such formulas. Let k be the maximum index appearing in j̄. If k < i, then (b) is false and we are

done. Moreover, ai /∈ acl(X ∪ ā \ {ak}), because if so, that would yield a formula with a shorter ā.

Thus, for Y = X ∪ ā \ {ak}, we have ai ∈ acl(Y ∪ {ak}) \ acl(Y ), so by exchange, ak ∈ acl(Y ∪ {ai}),

showing that (b) is false.

9.2.5. Suppose φ(x) is a formula of L and φ(A) is a minimal set in A with dimension κ. If |L| ≤ λ ≤ κ,

show that A has an elementary substructure B in which φ(B) has dimension λ.

Let X be a basis of φ(A), with |X | = κ, and let Y be a subset of X with |Y | = λ. We will construct

a B along the lines of Löwenheim-Skolem, but taking some care. Let B0 = 〈Y 〉A. We build a chain

of structures of length λ, (Bi | i < λ), such that for each ϕ(x, b̄), with b̄ in Bi, if A |= ∃xϕ(x, b̄), then

there is c ∈ Bi+1 with Bi+1 |= ϕ(c, b̄). This is done as follows. (Note that 〈C〉A ⊆ aclA(C), for any

C ⊆ A.) Let 〈θi | i < λ〉 enumerate formulas of the form ∃xϕ(x, b̄), with b̄ in Bi. We form a chain
〈

B
(j)
i | j < λ

〉

. B
(0)
i = Bi. If A |= ¬θj , B

(j+1)
i = B

(j)
i . If θj = ∃xϕ(x, b̄) and there exists d ∈ B

(j)
i

with A |= ϕ(d, b̄), B
(j+1)
i = B

(j)
i . If there is no such d ∈ B

(j)
i , choose a witness d from A and set

B
(j+1)
i = B

(j)
i ∪ {d}. Let Bi+1 =

⋃

j<λ B
(j)
i . Note that Bi+1 is a model, because for any constant

c, the formula ∃x(x = c) has a solution in A, and for any function f and any b̄, ∃x(f(b̄) = x) has a

solution in A. Let B =
⋃

i<λ Bi. Certainly dim(φ(B)) ≥ λ, so we must prove that Y actually spans

φ(B). Consider any b ∈ φ(B). If b ∈ Y , certainly b ∈ aclB(Y ), so assume not. Moreover, let b be

the first such element inserted into B by the above process. By the construction of B, there is some

formula ψ(x, ā), with A |= ψ(b, ā), for some ā in acl(Y ), which is responsible for b being in B. Let

θ(x, ā) = ψ(x, ā) ∧ φ(x). If θ has finitely many solutions in A, then b is algebraic over ā, and so we

are done (since acl(acl(Y )) = acl(Y )). Suppose θ has infinitely many solutions in A, and therefore

in φ(A). Then it has cofinitely many solutions in φ(A), and hence some c ∈ Y satisfies θ(c, ā), since

|Y | ≥ |L| ≥ ω. Thus, ψ(x, ā) cannot have been responsible for b’s entrance, contradiction. Thus, Y

does span φ(B), so dim(φ(B)) = κ.

9.2.6*. Show that if ψ(A) is a minimal set in A, then ψ(A) is strongly minimal if and only if A has
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an elementary extension B in which ψ(B) is minimal and of infinite dimension. In particular, every

minimal structure of infinite dimension is strongly minimal.

This claim is incorrect. Let A consist of ω and finite subsets of ω (denoted p(ω)) along with a

relation I, on pairs (i, σ), with i ∈ ω and σ ∈ p(ω), such that I(i, σ) ⇔ σ(i) = 1, and relations W and

Q which pick out ω and 2<ω. Then I claim W (A) is minimal. Suppose not. Then there is some formula

ϕ(x, ā) such that W (x) ∧ ϕ(x, ā) is neither finite nor cofinite. But it is clear that A is homogeneous,

and so, fixing the finitely many elements algebraic over ā, there is an automorphism taking some i

not in acl(ā) with ϕ(i, ā) to some j not in acl(ā) with ¬ϕ(j, ā), which is impossible. Moreover, W (A)

has infinite dimension, since acl(̄i) = ī, for any tuple ī ∈ W (A). W (x) remains minimal with infinite

dimension if we take an elementary extension of A by expanding ω to ω1, and taking all finite subsets

of ω1, since the same arguments go through. Thus, even if the problem means to specify a proper

elementary extension, A still has the required properties.

However, W (x) is not strongly minimal. Let B be the elementary extension of A formed by taking

the universe to be ω ∪ 2ω. Then W (B) is certainly not minimal, since for any σ ∈ 2ω such that

{i | σ(i) = 0} and {i | σ(i) = 1} are both infinite, I(x, σ) defines a non-finite, non-cofinite set in W (x).

9.2.7*. Show that if A is an L-structure and PA is a minimal set of uncountable cardinality, then A

is strongly minimal.

This is false on its face from the example of the previous problem, as modified at the end of the first

paragraph. It is also false if we simply take A to be ω1, with R a unary relation such that |R(A)| = ω1,

|¬R(A)| = ω, but even if the statement is modified to “PA is strongly minimal” instead of “A is

strongly minimal,” the example from the previous problem disproves it.

9.2.8. Show that the structure (ω,<) is minimal but not strongly minimal.

An easy back-and-forth argument shows that if ϕ(x, ā) has n quantifiers, then if a = max(ā), for all

b > 2n +a, ϕ(b, ā) must have a constant truth value. Thus, ϕ(ω, ā) is either finite or cofinite. However,

let B be a proper elementary extension of (ω,<), and fix b ∈ B \ω. It is easy to see that b > i for any

i ∈ ω, and also that B |= ∃≥nx(x > b) for every n ∈ ω, both by (ω,<) 4 B. But then x < b witnesses

that B is not minimal.

9.2.9. Let A be a structure (Ω, E), where E is an equivalence relation whose equivalence classes are

all finite, and E has just one class of cardinality n for each positive integer n. Show that A is minimal

but not strongly minimal.

The formulas ∃=nx(xEy) (n < ω), xEy, and x = y form an elimination set for Th(A). It is easy

to see then that any formula defines a finite or cofinite set on A. However, let B be an elementary

extension of A. B necessarily has a class of size ≥ ω. Then, taking b in that class, xEb defines an

infinite co-infinite set.
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9.3.1*. Let φ(x̄) be a formula of L with parameters in M . (a) Show that if b̄ is any sequence of

elements of M , and N is (M, b̄), then φ has the same Morley rank calculated in N as it has in M . (b)

Give an example to show that if L′ ⊆ L and φ is a formula of L′, then the Morley rank of φ calculated

in M |L′ need not be the same as in M .

For (a), go by induction on Morley rank. Suppose RMN(φ) ≥ α+1. Then we have ψ1, . . . ∈ L(N),

pairwise disjoint, with RM(φ∧ψi) ≥ α. But L(N) = L(M), so for each φ∧ψi, the induction hypothesis

applies, and so we are done.

For (b), consider φ(x) = x = x, let L′ be the empty language, let L = {R}, a language with one

unary predicate, and let M be a model such that R(M) and ¬R(M) are both infinite. Then φ has

Morley rank 1 in L′ and Morley rank 2 in L.

9.3.2. Write out a full proof of Lemma 9.3.2(a,c). [(a): If M |= ∀x̄(φ → ψ) then RM(φ) ≤ RM(ψ).

More generally if ψ′(x̄′) is a formula of L with parameters in M and there is a formula of L with

parameters in M which defines an injective map from φ(Mn) to ψ(Mm) for some m < ω, then

RM(φ) ≤ RM(ψ′). (c): If (M, ā) ≡ (M, b̄) then RM(χ(x̄, ā)) = RM(χ(x̄, b̄)).]

(a): By induction on α, show that RM(φ) ≥ α implies RM(ψ) ≥ α for any such φ and ψ whenever

this injective map exists. Fix φ and ψ and let σ(x̄, x̄′) define an injective map (if φ → ψ, σ(x̄, x̄′) =

x̄ = x̄′). At α = 0, trivial, and at limits, by induction. We are left with RM(φ) ≥ β + 1. Then we

have θ1, . . ., formulas of L with parameters from M , pairwise disjoint, with RM(φ∧ θi) ≥ β. Consider

∃x̄((φ ∧ θi)(x̄) ∧ σ(x̄, x̄′)). This defines a set in ψ(Mm). It is mapped into injectively by σ from

(φ ∧ θ)(x̄), so by induction, it has Morley rank at least β. Since each i gives a different set, disjoint

from the others by σ’s injectivity, we have infinitely many pairwise disjoint sets with Morley rank β,

and so we are done.

(c): I show RM(χ(x̄, ā)) ≥ RM(χ(x̄, b̄)) – this is enough by symmetry. Go by induction on α, for

RM(χ(x̄, ā)) ≥ α. At 0, M ≡ N does it, and at limits, there is nothing to do. So let RM(χ(x̄, ā)) ≥

β + 1. Then we have θ1(x̄, b̄1), θ2(x̄, b̄2), . . ., formulas with parameters in M , witnessing this. For

each θi, we have that RM(χ(x̄, ā) ∧ θi(x̄, b̄i)) ≥ β. By ω-saturation of M, we can find b̄′i such that

(M, ā) ≡ (M, b̄, b̄′i). By induction, RM(χ(x̄, b̄) ∧ θi(x̄, b̄
′
i)) ≥ β. Extending the elementary equivalence

to include all of the b̄i’s, M will prove that all of these sets are disjoint, and so RM(χ(x̄, b̄)) ≥ β + 1.

9.3.3*. Let A′ be an L-structure and φ(x̄) a formula of L with parameters ā in A′. Show that there is

a set T of sentences of L with parameters ā, such that the following are equivalent, for (A, ā) ≡ (A′, ā).

(a) There is a set of formulas ψs̄(x̄) with parameters from some elementary extension B of A, such that

the properties (i)-(iv) of Lemma 9.3.1(b) hold with B for A. (b) A is a model of T . [Lemma 9.3.1(b)

gives a tree of formulas exhibiting that RM(φ(x̄)) = ∞. I changed A to A′ in the statement of the

problem, since otherwise there is a trivial solution.]

Suppose some model elementarily equivalent to (A′, ā) has such an elementary extension, as in (a).
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We can assume this model is A′, WLOG. For s̄ ∈ k2, let s̄| − 1 be s̄|k − 1. If s̄ = (s̄| − 1) a 0, let

s̄∗ = (s̄| − 1) a 1, and likewise if s̄ = (s̄| − 1) a 1. Let T consist of all sentences of the form

∃b̄(0), b̄(1), b̄(00), b̄(01), . . . , b̄s̄a0, b̄s̄a1
(

∀x

(

∧

s̄∈<n2

(

ψs̄

(

x̄, b̄s̄
)

→ ψs̄|−1

(

x̄, b̄s̄|−1

))

∧
(

ψs̄

(

x̄, b̄s̄
)

→ ¬ψs̄∗

(

x̄, b̄s̄∗
))

)

∧
∧

s̄∈<n2

∃x̄ψs̄

(

x̄, b̄s̄
)

)

,

for some n ∈ ω, with an existential quantifier for each bs̄, s ∈ <n2, and ψ〈〉(x̄, b̄〈〉) = φ(x̄, ā). Then T

asserts the existence of finite approximations to the tree described in the Lemma. Since B actually

has such a tree, it satisfies T , and thus so does A′. Now, take any A with (A, ā) ≡ (A′, ā). A |= T , so

by compactness, it has an elementary extension in which the full tree is realized.

Thus, if some model elementarily equivalent to (A′, ā) satisfies (a), then every such model does, so

(a) implies (b), and (b) implies (a) by the above compactness argument.

9.3.4. Let K and L be first-order languages, A a K-structure and B an L-structure. Suppose B is

interpretable in A. Show that if A has Morley rank α, then the Morley rank of B is at most (α+ 1)n

for some n < ω.

The universe of B is the image of some definable map on n-tuples for some n. All formulas in K

defining sets in B can be translated into formulas in L defining sets in A and the property of disjointness

is preserved. It is thus trivial to show that RM(B) ≤ RM(An) ≤ (α+ 1)n.

9.3.5. Let A be an L-structure, X a set of elements of A and ā, b̄ tuples of elements of A. Show that

if p(x̄) = tpA(ā/X) has Morley rank α and b̄ is algebraic over X and ā, then q(ȳ) = tpA(b̄/X) has

Morley rank ≤ α.

Let ϕ(x̄) ∈ p have minimal Morley rank in p. Let b̄ be algebraic over ā with formula θ (with

parameters in X), so we have χ(ā, b̄) = ∃=nȳθ(ȳ, ā) ∧ θ(b̄, ā). Write ζ(ā, b̄) = χ(ā, b̄) ∧ ϕ(ā). For any

ā′, we know that RM(ζ(ā′, ȳ)) ≤ 0, since there can only be n solutions, if there are any. Then, by

Erimbetov’s inequality, RM(∃x̄ζ(x̄, ȳ)) ≤ RM(∃ȳζ(x̄, ȳ)). But the second formula is in p and has

minimal Morley rank, and the first is in q. Thus RM(q) ≤ RM(p).

9.3.6. Give examples to show that for every positive integer d there are a structure A and a complete

type p(x) over ∅ with respect to A, such that p has Morley rank 1 and Morley degree d.

Let A be a model with one equivalence relation, and d classes, all infinite. Then there is only one

1-type over ∅, x = x, but it can be broken into the disjoint equivalence classes, each of which is defined

by a formula with a parameter from that class.

9.3.7. Let p(x) be a complete type over a set X with respect to the L-structure A. Suppose φ(x)

and ψ(x) are formulas of L with parameters in X , and suppose φ ∈ p. Let θ(x, y) be a formula with

parameters in X , which defines in A a bijection from φ(A) to ψ(A). Show that there is a complete
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type q(y) over X , such that for every formula σ(y) of L with parameters in X , σ ∈ q if and only if

∃y(θ(x, y) ∧ σ(y)) is in p. Show that q has the same Morley rank as p.

Define q = {σ(y) | ∃y(θ(x, y)∧σ(y)) ∈ p}. We show q is complete and consistent. First, consistency.

Suppose not. Then we have σ1(y), . . . , σn(y) ⊢ ¬σ0(y), for some σi(y) ∈ q (i ≤ n), so we have

¬σ0(y) ∨ . . . ∨ ¬σn(y). Let a realize p in some extension of A, B. Then we have ∃y(θ(a, y) ∧ σi(y))

(i ≤ n). θ remains a bijection, since it is a definable property, but since θ is a bijection, there is only

one b with θ(a, b), so we must have σi(b) (i ≤ n), which is impossible. Thus, q is consistent. Now for

completeness. Since p is complete, it must either contain ∃y(θ(x, y) ∧ σ(y)) or ¬∃y(θ(x, y) ∧ σ(y)), for

each σ(y). Since for any realization of p(x), there certainly is a (unique) element satisfying θ(x, y), σ

must be false on it. But then ¬σ(y) is true on it, so we have ∃y(θ(x, y) ∧ ¬σ(y)). Thus q is complete,

and so it is a type.

Any formula in q (after it is conjuncted with ψ) defines a set that is mapped injectively (through θ)

to a set defined by a formula in p, and vice versa. Thus, through Lemma 9.3.2(a), RM(q) must equal

RM(p).

9.3.8. Let G be a group which is totally transcendental. Prove: (a) there are no infinite strictly

decreasing chains of definable subgroups of G. [Consider cosets and use Lemma 9.3.1.] (b) Every

intersection of a family of definable subgroups of G is equal to the intersection of a finite subfamily.

For (a), suppose there is an infinite strictly decreasing chain of definable subgroups, H0 ≥ H1, . . ..

Each coset aHi is definable, and so we easily get a tree as in Lemma 9.3.1, since every group has at

least 2 cosets in the previous group. For (b), if not, then the descending chain condition would be

violated by the intersections.

9.4.1. Show that in the definition of ‘unstable theory’ it makes no difference if we allow parameters

in the formula φ of (4.1).

Suppose we have such a φ with parameters, so write φ as φ(x̄, ȳ, c̄). We have {āi | i < ω} fulfilling

(4.1) for φ. Write c̄ = (c1, . . . , ck) and x̄ = (x1, . . . , xn). Let ū = (u1, . . . , uk+n), and likewise for v̄.

Now take ψ(ū, v̄) = φ(u1, . . . , un, v1, . . . , vn, un+1, . . . , un+k). Then {āi a c̄ | i < ω} witnesses (4.1).

9.4.2. Show that if Q and R are respectively the field of rational numbers and the field of reals, then

both Th(Q) and Th(R) are unstable.

The formula ϕ(x, y) defined by “y−x is a non-zero sum of four squares” orders the positive integers

in both R and Q.

9.4.3. Show that every complete theory with the strict order property is unstable.

We have a formula φ which orders arbitrarily long finite chains in each model of T . By compactness,

there is a model of T where φ orders an infinite chain.
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9.4.4. Show that every complete theory with the independence property is unstable.

Let φ(x̄, ȳ) be a formula with the independence property. By compactness, find a model with

{b̄i | i < ω} witnessing φ’s independence. Then for each k, we can find āk with φ(āk, b̄j) ⇔ j ≤ k.

Defining ψ(ȳ, x̄) = φ(x̄, ȳ), {(b̄i, āi) | i < ω} witnesses that ψ is an unstable formula, and thus that T

is unstable.

9.4.5. Give examples of (a) a complete theory which has the strict order property but not the

independence property, (b) a complete theory which has the independence property but not the strict

order property.

The theory of dense linear orders without endpoints certainly has the strict order property. It does

not have the independence property by a result due to Shelah/Vapnik-Chervonenkis. The theory of

the random graph easily has the independence property. Suppose it had the strict order property.

Then there would be a definable partial ordering on n-tuples of the random graph, for some n, ϕ(x̄, ȳ).

But the theory of the random graph has quantifier elimination. So we can write any formula ψ as a

disjunction of conditions of the form θ(x̄, ȳ) =
∧

i∈u,j∈v xiRyj ∧
∧

i∈w,j∈z ¬xiRyj . Now choose ā1, ā2

with φ(ā1, ā2). We can then inductively find b̄ = (b1, . . . , bn) such that θ(ā2, b̄) for some θ like the above

in φ, and θ(b̄, ā1) for some θ like the above in ¬φ. But then b̄ contradicts φ being a partial ordering.

9.4.6. Show that if T is unstable it has an unstable formula.

If T is unstable, it has some formula of the form ϕ(x̄, ȳ), with {c̄i | i < ω} witnessing (4.1). Let

ψ(x̄, ȳ) be x̄ = ȳ ∨ φ(x̄, ȳ). Then ψ is an unstable formula, witnessed by {(c̄i, c̄i) | i < ω}.

9.4.7. Let L be a first-order language and T a complete theory in L. (a) Show that if φ(x̄, ȳ) is a

stable formula for T , then so is ¬φ(x̄, ȳ). (b) Show that if φ(x̄, ȳ) and ψ(x̄, ȳ) are stable formulas for

T , then so is (φ ∧ ψ)(x̄, ȳ).

For (a), we prove the contrapositive. By compactness we have an infinite sequence {(āi, b̄i) | i < ω},

with |= ¬φ(āi, b̄j) ⇔ i ≤ j. But then for any n we can find (c̄1, d̄1), . . . , (c̄n, d̄n) such that |= φ(c̄i, d̄j) ⇔

i ≤ j (set (c̄i, d̄i) = (ān−i, b̄n−i−1)). Then φ is unstable.

For (b), again show the contrapositive. By compactness, we have {(āi, b̄i) | i < ω}, with |=

(φ ∧ ψ)(āi, b̄j) ⇔ i ≤ j. Define a 3-coloring of [ω]2 by f(i, j) = 0 if (¬φ ∧ ¬ψ)(āj , b̄i), f(i, j) = 1 if

¬φ(āj , b̄i), and f(i, j) = 2 if ¬ψ(āj , b̄i). Note that both φ and ψ cannot be true, because that would

contradict φ ∧ ψ being unstable. By Ramsey’s theorem, we can find an infinite subset of ω, K, such

that f is constant on [K]2. But then {(āi, b̄i) | i ∈ K} will witness either φ’s or ψ’s instability.

9.4.8. Suppose φ(x̄, ȳ) is a stable formula for T . (a) Show that if ȳ′ is a tuple of variables which

include all those in ȳ, and ψ(x̄, ȳ′) is equivalent to φ(x̄, ȳ) modulo T , then ψ is also stable. (b) Show

that if x̄′ is ȳ and ȳ′ is x̄, and θ(x̄′, ȳ′) is the formula φ(x̄, ȳ), then θ is stable.

98



Doing the contrapositive for (a), with compactness, we have {(āi, b̄
′
i) | i < ω} witnessing ψ’s

instability. Then the appropriate b̄i replacing b̄ witnesses φ’s instability.

For (b), the contrapositive and compactness gives us {(āi, b̄i) | i < ω} witnessing θ’s instability.

Then a similar argument to 9.4.7(a) gives that φ is unstable.

9.4.9. Show that every stable integral domain is a field.

We show any integral domain not a field is unstable. Let t be any non-zero non-invertible element.

Consider the sequence 1, t, t2, . . .. The relation ∃z(xz = y) orders this sequence if it is infinite, and

makes the integral domain unstable. If the sequence is finite, then for some m,n ∈ ω, tm = tn. By

cancellation, t is invertible.

9.4.10. Show that if T is an unstable complete theory in the first-order language L, then there is a

formula φ(x, ȳ) of L such that for arbitrarily large finite n, T implies that there are ā0, . . . , ān−1 for

which ¬∃x
∧

i<n φ(x, āi) holds, but ∃x
∧

i∈w φ(x, āi) holds for each proper subset w of n.

We first show that (Q, <) has the above property. Define φ(x, y0, y1, y2, y3) = y0 < x < y1 ∨ y1 <

x < y2. Now, for any n, let āi = (i, n+ i− 1, n+ i, 2n+ i− 1) (0 ≤ i < n). We verify that this choice

works. First check that not all the φ(Q, āi)’s can be simultaneously satisfied. Suppose some rational k

does. If k < i (i < n), then k /∈ φ(Q, āi). Thus, k ≥ n−1. But [n−1+ i, n+ i] is not in φ(Q, āi), which

implies k > 2n− 1, but [2n− 1,∞) is not in φ(Q, ā0), so k cannot exist. Now check that omitting any

φ(Q, āi) makes the remainder satisfiable: any point in (n−1+ i, n+ i) will be in every other set. Thus,

(Q, <) has Shelah’s finite cover property.

By compactness, if T is unstable, we can find a model in which some formula ϕ defines a dense

linear ordering without endpoints on some countable set. Then applying the above argument yields

Shelah’s finite cover property.

9.4.11. Let the L-structure A be a model of a stable theory T , let p(x̄) be a complete type over X with

respect to A, and let φ(x̄, ȳ) be a formula of L. Define the strict φ-rank of p(x̄) to be the minimum

value of BI(φ, ψ) as ψ(x̄) ranges over all formulas of p which are conjunctions of formulas of the form

φ(x̄, c̄) or ¬φ(x̄, c̄). Prove Theorem 9.4.9 [definability of types] using strict φ-rank in place of φ-rank.

Following the proof, the strict φ-rank of p is some finite number n (perhaps greater than the φ-

rank), witnessed by some ψ of the above form. Let dp φ(ȳ) be the formula ‘BI(φ, ψ ∧ φ(−, ȳ)) ≥ n’.

Now, if φ(x̄, c̄) ∈ p, then BI(φ, ψ ∧ φ(−, c̄)) ≥ n, since ψ ∧ φ(x̄, c̄) is in the required form. Inversely, if

not, then ¬φ(x̄, c̄) ∈ p, and since ψ ∧ ¬φ(x̄, c̄) is in the required form, BI(φ, ψ ∧ ¬φ(−, c̄)) ≥ n, so by

Lemma 9.4.11, BI(φ, ψ ∧ φ(−, c̄)) < n, so ¬dp φ(c̄).
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